Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic ...Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.展开更多
AIM: To investigate the electric and contractile mechanisms involved in the deranged function of the transposed stomach in relation to the course of the symptoms and the changes in contractile and electrical parameter...AIM: To investigate the electric and contractile mechanisms involved in the deranged function of the transposed stomach in relation to the course of the symptoms and the changes in contractile and electrical parameters over time.METHODS: Twenty-one patients after subtotal esophagectomy and 18 healthy volunteers were studied.Complaints were compiled by using a questionnaire, and a symptom score was formed. Synchronous electrogastrography and gastric manometry were performed in the fasting state and postprandially.RESULTS: Eight of the operated patients were symptomfree and 13 had symptoms. The durations of the postoperative periods for the symptomatic (9.1±6.5 mo)and the asymptomatic (28.3±8.8 mo) patients were significantly different. The symptom score correlated negatively with the time that had elapsed since the operation. The percentages of the dominant frequency in the normogastric, bradygastric and tachygastric ranges differed significantly between the controls and the patients.A significant difference was detected between the power ratio of the controls and that of the patients. The occurrence of tachygastria in the symptomatic and the symptom-free patients correlated negatively both with the time that had elapsed and with the symptom score. There was a significant increase in motility index after feeding in the controls, but not in the patients. The contractile activity of the stomach increased both in the controls and in the symptom-free patients. In contrast, in the group of symptomatic patients, the contractile activity decreased postprandially as compared with the fasting state.CONCLUSION: The patients' post-operative complaints and symptoms change during the post-operative period and correlate with the parameters of the myoelectric and contractile activities of the stomach. Tachygastria seems to be the major pathogenetic factor involved in the contractile dysfunction.展开更多
This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode ob...This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.展开更多
In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)st...In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting ...For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.展开更多
Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conv...Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.展开更多
The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order har...The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper.Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.展开更多
This study investigated the factors affecting the English language learning of students in SL (synchronous) and ASL (asynchronous) e-learning. The subjects were 102 undergraduate students at Bang Khen and Kamphaen...This study investigated the factors affecting the English language learning of students in SL (synchronous) and ASL (asynchronous) e-learning. The subjects were 102 undergraduate students at Bang Khen and Kamphaengsaen Campus, Kasetsart University. Before the experiment, the subjects answered an online questionnaire adopted from Reid (1998) to measure their perceptual learning style preferences. Then, they were grouped according to their English grades and were randomly assigned to two experimental groups. Each group was given learning tasks requiring different cognitive strategies. The two groups received two treatments with SL and ASL simultaneously. After each treatment, both groups were tested. They were given a questionnaire at the end of the treatments to retrieve their opinions, Data from both tests were analyzed using 2 ~ 2 factorial ANOVA repeated measures. The results showed no significant difference between the two tasks and no interaction effect among types of tasks and SL and ASL. However, a significant difference was found between SL and ASL. The results of the survey showed that the subjects preferred ASL which was in contrast to the results from statistical analyses. The learning style preferences of the two experiment groups were not different; therefore, they were not the factors in the analysis展开更多
In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved e...In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.展开更多
Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of th...Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.展开更多
This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determinin...This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determining the dynamic limit in a PQ diagram. The paper also addresses procedures of improving the accuracy of surface temperature measurement using the contact DS 18B20 digital temperature probes. The paper also provides experimental results of direct temperature measurement of the excitation winding surface conducted in the salient pole synchronous generator in the rotation.展开更多
Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By wi...Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.展开更多
DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the D...DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.展开更多
MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchr...MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.展开更多
基金Open Fund Project of State Key Laboratory of Large Electric Transmission Systems and Equipment Technology(No.2012AA052903)
文摘Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified.
文摘AIM: To investigate the electric and contractile mechanisms involved in the deranged function of the transposed stomach in relation to the course of the symptoms and the changes in contractile and electrical parameters over time.METHODS: Twenty-one patients after subtotal esophagectomy and 18 healthy volunteers were studied.Complaints were compiled by using a questionnaire, and a symptom score was formed. Synchronous electrogastrography and gastric manometry were performed in the fasting state and postprandially.RESULTS: Eight of the operated patients were symptomfree and 13 had symptoms. The durations of the postoperative periods for the symptomatic (9.1±6.5 mo)and the asymptomatic (28.3±8.8 mo) patients were significantly different. The symptom score correlated negatively with the time that had elapsed since the operation. The percentages of the dominant frequency in the normogastric, bradygastric and tachygastric ranges differed significantly between the controls and the patients.A significant difference was detected between the power ratio of the controls and that of the patients. The occurrence of tachygastria in the symptomatic and the symptom-free patients correlated negatively both with the time that had elapsed and with the symptom score. There was a significant increase in motility index after feeding in the controls, but not in the patients. The contractile activity of the stomach increased both in the controls and in the symptom-free patients. In contrast, in the group of symptomatic patients, the contractile activity decreased postprandially as compared with the fasting state.CONCLUSION: The patients' post-operative complaints and symptoms change during the post-operative period and correlate with the parameters of the myoelectric and contractile activities of the stomach. Tachygastria seems to be the major pathogenetic factor involved in the contractile dysfunction.
基金Project(2012(PS-2012-090))supported by the Pukyong National University Research Abroad Fund,Korea
文摘This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor(PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer(SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter(LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.
基金National Natural Science Foundation of China(No.1461023)Gansu Provincial Education Department Project(No.2016B-036)Changjiang Scholars and Innovative Research Team(No.RT_16R36)
文摘In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.
文摘For a permanent magnet synchronous motor(PMSM)model predictive current control(MPCC)system,when the speed loop adopts proportional-integral(PI)control,speed regulation is easily affected by motor parameters,resulting in the inability to balance the system robustness and dynamic performance.A PMSM optimal control strategy combining linear active disturbance rejection control(LADRC)and two-vector MPCC(TV-MPCC)is proposed.Firstly,a mathematical model of a PMSM is presented,and the PMSM TV-MPCC model is developed in the synchronous rotation coordinate system.Secondly,a first-order LADRC controller composed of a linear extended state observer and linear state error feedback is designed to reduce the complexity of parameter tuning while linearly simplifying the traditional active disturbance rejection control(ADRC)structure.Finally,the conventional PI speed regulator in the motor speed control system is replaced by the designed LADRC controller.The simulation results show that the speed control system using LADRC can effectively deal with the changes in motor parameters and has better robustness and dynamic performance than PI control and similar methods.The system has a fast motor speed response,small overshoot,strong anti-interference,and no steady-state error,and the total harmonic distortion is reduced.
基金National Natural Science Foundation of China(No.61463025)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy.
文摘The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper.Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.
文摘This study investigated the factors affecting the English language learning of students in SL (synchronous) and ASL (asynchronous) e-learning. The subjects were 102 undergraduate students at Bang Khen and Kamphaengsaen Campus, Kasetsart University. Before the experiment, the subjects answered an online questionnaire adopted from Reid (1998) to measure their perceptual learning style preferences. Then, they were grouped according to their English grades and were randomly assigned to two experimental groups. Each group was given learning tasks requiring different cognitive strategies. The two groups received two treatments with SL and ASL simultaneously. After each treatment, both groups were tested. They were given a questionnaire at the end of the treatments to retrieve their opinions, Data from both tests were analyzed using 2 ~ 2 factorial ANOVA repeated measures. The results showed no significant difference between the two tasks and no interaction effect among types of tasks and SL and ASL. However, a significant difference was found between SL and ASL. The results of the survey showed that the subjects preferred ASL which was in contrast to the results from statistical analyses. The learning style preferences of the two experiment groups were not different; therefore, they were not the factors in the analysis
基金National Natural Science Foundation of China(No.61461023)Gansu Provincial Department of Education Project(No.2016B-036)
文摘In order to improve the control performance of three-phase permanent magnet synchronous motor(PMSM)system,an active disturbance rejection finite control set-mode predictive control(FCS-MPC)strategy based on improved extended state observer(ESO)is proposed in this paper.ESO is designed based on the arc-hyperbolic sine function to obtain estimations of rotating speed and back electromotive force(EMF)term of motor speed.Active disturbance rejection control(ADRC)is applied as speed controller.The proposed FCS-MPC strategy aims to reduce the electromagnetic torque ripple and the complexity and calculation of the algorithm.Compared with the FCS-MPC strategy based on PI controller,the constructed control strategy can guarantee the reliable and stable operation of PMSM system,and has good speed tracking,anti-interference ability and robustness.
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. Y104414) and the Science and Technology Plan of Zhejiang Province (No. 2005C21084), China
文摘Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.
文摘This paper addresses some of the problems related to direct surface temperature measurement of a salient pole synchronous generator excitation winding in rotation. Excitation winding temperature is used for determining the dynamic limit in a PQ diagram. The paper also addresses procedures of improving the accuracy of surface temperature measurement using the contact DS 18B20 digital temperature probes. The paper also provides experimental results of direct temperature measurement of the excitation winding surface conducted in the salient pole synchronous generator in the rotation.
文摘Permanent magnet synchronous Generator (PMSG) based direct-drive wind energy conversion system (WECS) has been attracting wide attentions. For the special application, sensorless control for PMSG is desired. By widely studying the previous contributes, a novel estimator based on back-EMF is proposed. The estimator is composed of back-EMF observer and a phase-lock-loop (PLL) control to get the rotor-flux speed and position. The estimator not only can be used for interior and surface permanent magnet synchronous generators, but also has a compact and symmetrical structure, which makes it be beneficial for implementation. Compared with previous strategies, the EMF observer is independent of the PLL control, which would simplify the observer design. Meanwhile, the proposed estimator is less sensitive to parameter variations. Based on mathematic models of PMSG, the proposed estimator was analyzed in detail, and the realizing process was also presented. To validate the proposed estimator, the important experiment results are reported.
文摘DFSM (doubly fed synchronous machine) presents several advantages such as efficiency improvement, weight reduction and increase of the utilization factor (kW/kg). In this paper the authors focus on impact of the DFSM on the efficiency and machine weight in comparison to conventional synchronous generator with wound rotor. Different topologies of DFSM are briefly described and the different methods and models for performances prediction are presented.
文摘MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.