溶液法是新型光电器件制备的重要手段,然而以钙钛矿半导体材料为代表的薄膜样品制备通常需要在手套箱环境下完成,传统的实验表征大多在空气环境下进行,这显然很难反映薄膜结构与器件性能间的真实关联,因此急需对溶液成膜过程的微结构演...溶液法是新型光电器件制备的重要手段,然而以钙钛矿半导体材料为代表的薄膜样品制备通常需要在手套箱环境下完成,传统的实验表征大多在空气环境下进行,这显然很难反映薄膜结构与器件性能间的真实关联,因此急需对溶液成膜过程的微结构演变开展原位实时研究.为了实现溶液法成膜中的结构与形貌的同步辐射掠入射广角散射实时观测,本文结合上海同步辐射光源线站布局,报道了一种基于手套箱的原位成膜观测装置,可实现标准手套箱环境(c(H_(2)O,O_(2))<1×10^(-6))下远程控制薄膜旋涂、涂布及样品后处理,并实时可视化监测微结构和形貌演变.基于该装置进行的钙钛矿薄膜狭缝涂布大面积成膜结晶过程的原位GIWAXS/GISAXS(gtrazing incidence wide and small angle X-ray scattering)可视化测试揭示了薄膜微结构转变的内在驱动力:钙钛矿薄膜沉积界面层的优化对提升钙钛矿成核速率、诱导结晶择优取向、形成晶粒有序堆叠等具有“共性作用”,同时在成膜过程中的新生中间相显著提升软晶格薄膜质量和稳定性.基于各层均采用卷对卷全溶液狭缝涂布方法制备的大面积全柔性三维钙钛矿薄膜太阳能电池转换效率提升至5.23%(单个器件面积约15 cm^(2)),为迄今报道的这一体系该尺寸的全溶液狭缝涂布柔性钙钛矿器件的最高器件效率之一.因而,基于该同步辐射原位GIWAXS/S/GISAXS装置可以获得控制薄膜生长界面特性和薄膜品质的关键工艺,指导优化制备薄膜的最佳工艺条件.展开更多
Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and...Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.展开更多
文摘溶液法是新型光电器件制备的重要手段,然而以钙钛矿半导体材料为代表的薄膜样品制备通常需要在手套箱环境下完成,传统的实验表征大多在空气环境下进行,这显然很难反映薄膜结构与器件性能间的真实关联,因此急需对溶液成膜过程的微结构演变开展原位实时研究.为了实现溶液法成膜中的结构与形貌的同步辐射掠入射广角散射实时观测,本文结合上海同步辐射光源线站布局,报道了一种基于手套箱的原位成膜观测装置,可实现标准手套箱环境(c(H_(2)O,O_(2))<1×10^(-6))下远程控制薄膜旋涂、涂布及样品后处理,并实时可视化监测微结构和形貌演变.基于该装置进行的钙钛矿薄膜狭缝涂布大面积成膜结晶过程的原位GIWAXS/GISAXS(gtrazing incidence wide and small angle X-ray scattering)可视化测试揭示了薄膜微结构转变的内在驱动力:钙钛矿薄膜沉积界面层的优化对提升钙钛矿成核速率、诱导结晶择优取向、形成晶粒有序堆叠等具有“共性作用”,同时在成膜过程中的新生中间相显著提升软晶格薄膜质量和稳定性.基于各层均采用卷对卷全溶液狭缝涂布方法制备的大面积全柔性三维钙钛矿薄膜太阳能电池转换效率提升至5.23%(单个器件面积约15 cm^(2)),为迄今报道的这一体系该尺寸的全溶液狭缝涂布柔性钙钛矿器件的最高器件效率之一.因而,基于该同步辐射原位GIWAXS/S/GISAXS装置可以获得控制薄膜生长界面特性和薄膜品质的关键工艺,指导优化制备薄膜的最佳工艺条件.
基金supported by the National Natural Science Foundation of China (11434006, 11774199, and 51871112)the National Basic Research Program of China (2015CB921502)+1 种基金the 111 Project B13029supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DEAC02-76SF00515。
文摘Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.