Transforming growth factor-β (TGF-β) binds with two transmembrane serine/threonine kinase receptors, type Ⅱ (TβRII) and type Ⅰ receptors (TβRⅠ), and one accessory receptor, type Ⅲ receptor (TβRⅢ), to...Transforming growth factor-β (TGF-β) binds with two transmembrane serine/threonine kinase receptors, type Ⅱ (TβRII) and type Ⅰ receptors (TβRⅠ), and one accessory receptor, type Ⅲ receptor (TβRⅢ), to transduce signals across cell membranes. Previous biochemical studies suggested that TβRI and TβRIII are preexisted homo-dimers. Using single-molecule microscopy to image green fluorescent protein-labeled membrane proteins, for the first time we have demonstrated that TβRI and TβRⅢ could exist as monomers at a low expression level. Upon TGF-β1 stimu- lation, TβRI follows the general ligand-induced receptor dimerization model for activation, but this process is TβRⅡ- dependent. The monomeric status of the non-kinase receptor TβRⅢ is unchanged in the presence of TGF-β1. With the increase of receptor expression, both TβRI and TβRIII can be assembled into dimers on cell surfaces.展开更多
The concentrations of polychlorinated biphenyls (PCBs) have been determined in soils collected in Beijing of China. According to Principle Component Analysis (PCA) of PCBs, the possible sources were studied. Relat...The concentrations of polychlorinated biphenyls (PCBs) have been determined in soils collected in Beijing of China. According to Principle Component Analysis (PCA) of PCBs, the possible sources were studied. Relationship between PCBs and soil organic materials revealed that higher chlorinated PCBs are more inclined to be adsorbed by particles rich of organic materials. But the low chlorinated homologues are dominant in Beijing soils, which is very different from the foreign studies. It was concluded that the application of relatively low chlorinated commercial PCBs in China was the main reason leading to this homologue composition character. Besides, the relatively short pollution history is also one of the main reasons. PCA of PCBs data in Beijing soil and atmospheric deposition samples revealed that some other emission sources such as atmospheric deposition, automobile exhaust; chemical and petrochemical industry and steel industry may be the important reasons of elevated PCBs concentrations in Beijing soil展开更多
We examined stable isotope signals of precipitation, soil water, and xylem water and ran the multi-source linear mixing model (IsoSource) to determine water uptake depths and estimate proportional contribution of po...We examined stable isotope signals of precipitation, soil water, and xylem water and ran the multi-source linear mixing model (IsoSource) to determine water uptake depths and estimate proportional contribution of possible water pools to the water use of Mongolian pine (Pinus sylvestris var. mongolica) plantation in southeast Horqin Sandy Land. We also examined variations of the water use by Mongolian pine trees before and after a heavy precipitation event. The closeness of isotopic composition between xylem water and potential water pools presented that most of water uptake by the trees occurred in the depth of below 20 cm soil (up to 80 cm in this study). Estimate from the IsoSource model agrees well with observation, and the model yielded that over 60% of the water was derived from 20–80 cm soil layer under relatively higher soil moisture conditions, contribution from much deeper soil depth may increase when the soil in this layer became dry. The contribution from the groundwater was very low since water table was much deeper than rooting depth of the trees. Isotopic signals of xylem water of Mongolian pine trees before and after a heavy precipitation of 14.4 mm on July 13 in 2009 exhibited that the trees could sense and use recent rain-charged soil water at the upper 20 cm soil layer 36 hours after the rain, and this contribution decreased rapidly in the following 24 hours. The ability of accessing different water pools of Mongolian pine trees under various soil moisture conditions is likely a good indicator of their adaptability to dry habitats in sandy lands.展开更多
基金This work was supported by the National Natural Science Foundation of China (90713024, 20821003, 30921004), the National Basic Research Program of China (2007CB935601, 2010CB833706) and the Chinese Academy of Sciences.
文摘Transforming growth factor-β (TGF-β) binds with two transmembrane serine/threonine kinase receptors, type Ⅱ (TβRII) and type Ⅰ receptors (TβRⅠ), and one accessory receptor, type Ⅲ receptor (TβRⅢ), to transduce signals across cell membranes. Previous biochemical studies suggested that TβRI and TβRIII are preexisted homo-dimers. Using single-molecule microscopy to image green fluorescent protein-labeled membrane proteins, for the first time we have demonstrated that TβRI and TβRⅢ could exist as monomers at a low expression level. Upon TGF-β1 stimu- lation, TβRI follows the general ligand-induced receptor dimerization model for activation, but this process is TβRⅡ- dependent. The monomeric status of the non-kinase receptor TβRⅢ is unchanged in the presence of TGF-β1. With the increase of receptor expression, both TβRI and TβRIII can be assembled into dimers on cell surfaces.
基金Acknowledgements: The research was supported by Beijing Natural and Science Foundation.
文摘The concentrations of polychlorinated biphenyls (PCBs) have been determined in soils collected in Beijing of China. According to Principle Component Analysis (PCA) of PCBs, the possible sources were studied. Relationship between PCBs and soil organic materials revealed that higher chlorinated PCBs are more inclined to be adsorbed by particles rich of organic materials. But the low chlorinated homologues are dominant in Beijing soils, which is very different from the foreign studies. It was concluded that the application of relatively low chlorinated commercial PCBs in China was the main reason leading to this homologue composition character. Besides, the relatively short pollution history is also one of the main reasons. PCA of PCBs data in Beijing soil and atmospheric deposition samples revealed that some other emission sources such as atmospheric deposition, automobile exhaust; chemical and petrochemical industry and steel industry may be the important reasons of elevated PCBs concentrations in Beijing soil
基金the National Science Foundation of China (30770339)
文摘We examined stable isotope signals of precipitation, soil water, and xylem water and ran the multi-source linear mixing model (IsoSource) to determine water uptake depths and estimate proportional contribution of possible water pools to the water use of Mongolian pine (Pinus sylvestris var. mongolica) plantation in southeast Horqin Sandy Land. We also examined variations of the water use by Mongolian pine trees before and after a heavy precipitation event. The closeness of isotopic composition between xylem water and potential water pools presented that most of water uptake by the trees occurred in the depth of below 20 cm soil (up to 80 cm in this study). Estimate from the IsoSource model agrees well with observation, and the model yielded that over 60% of the water was derived from 20–80 cm soil layer under relatively higher soil moisture conditions, contribution from much deeper soil depth may increase when the soil in this layer became dry. The contribution from the groundwater was very low since water table was much deeper than rooting depth of the trees. Isotopic signals of xylem water of Mongolian pine trees before and after a heavy precipitation of 14.4 mm on July 13 in 2009 exhibited that the trees could sense and use recent rain-charged soil water at the upper 20 cm soil layer 36 hours after the rain, and this contribution decreased rapidly in the following 24 hours. The ability of accessing different water pools of Mongolian pine trees under various soil moisture conditions is likely a good indicator of their adaptability to dry habitats in sandy lands.