The phase group synchronization between any signals is further revealed,which is based on proposing the new concepts of the greatest common factor frequency,the least common multiple period,quantized phase shift resol...The phase group synchronization between any signals is further revealed,which is based on proposing the new concepts of the greatest common factor frequency,the least common multiple period,quantized phase shift resolution,equivalent phase comparison frequency and so on.Then the problem of phase comparison and processing between different frequency signals is solved and shown in detail.Using the basic principle and the variation law of group phase difference,the frequency stability better than 10-14/s can be easily obtained in the time&frequency measurement and control domain,and experimental results also show the phase relations between atomic energy level transition signal and the locked crystal oscillator signal in an active hydrogen atomic clock are strict phase group synchronization,and locked precision with 10-13/s can be reached based on phase group synchronization.The phase group synchronization can provide technical support to frequency linking among radio frequency,microwave and light frequency.展开更多
The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, ...The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, including one OmpR-type activator (JadR1) and two TetR-like repressors (JadR* and JadR2). To examine their interactions in jadomycin biosynthesis, a series of mutants were generated and tested for jadomycin production. We noticed that jadomycin production in the jadR*-jadR2 double mutant was increased dramatically compared with either single mutant. Transcriptional analysis showed that jadR* and jadR2 act synergistically to repress jadomycin production by inhibiting the transcription of jadR1. Furthermore, jadR* and jadR2 reciprocally inhibit each other. The complex interactions among these three CSRs may provide clues for the activation of the jadomycin gene cluster, which would otherwise remain silent without stimulation from stress signals.展开更多
基金supported by the Joint Fund for Fostering Talents of National Natural Science Foundation of China and Henan Province(Grant No.U1304618)the Open Fund of Key Laboratory of Precision Navigation and Timing Technology of Chinese Academy of Sciences(Grant No.2012PNTT01)+4 种基金the Postdoctoral Grant of China(Grant Nos.2011M501446,2012T50798)the Basic and Advanced Technology Research Foundation of Henan Province(Grant No.122300410169)The Key Science and Technology Foundation of Zhengzhou City(Grant Nos.131PPTGG411-6,131PCXTD594)the Doctor Fund of Zhengzhou University of Light Industry(Grant No.2011BSJJ031)the Fundamental Research Funds for the Central Universities(Grant No.K5051204003)
文摘The phase group synchronization between any signals is further revealed,which is based on proposing the new concepts of the greatest common factor frequency,the least common multiple period,quantized phase shift resolution,equivalent phase comparison frequency and so on.Then the problem of phase comparison and processing between different frequency signals is solved and shown in detail.Using the basic principle and the variation law of group phase difference,the frequency stability better than 10-14/s can be easily obtained in the time&frequency measurement and control domain,and experimental results also show the phase relations between atomic energy level transition signal and the locked crystal oscillator signal in an active hydrogen atomic clock are strict phase group synchronization,and locked precision with 10-13/s can be reached based on phase group synchronization.The phase group synchronization can provide technical support to frequency linking among radio frequency,microwave and light frequency.
基金supported by grants from the Ministry of Science and Technology of China (2013CB734001, 2009CB118905)the National Natural Science Foundation of China (31270110, 31030003)
文摘The biosynthesis of antibiotics is controlled by cascade regulation involving cluster-situated regulators (CSRs) and pleiotropic regulators. Three CSRs have been identified in the jadomycin biosynthetic gene cluster, including one OmpR-type activator (JadR1) and two TetR-like repressors (JadR* and JadR2). To examine their interactions in jadomycin biosynthesis, a series of mutants were generated and tested for jadomycin production. We noticed that jadomycin production in the jadR*-jadR2 double mutant was increased dramatically compared with either single mutant. Transcriptional analysis showed that jadR* and jadR2 act synergistically to repress jadomycin production by inhibiting the transcription of jadR1. Furthermore, jadR* and jadR2 reciprocally inhibit each other. The complex interactions among these three CSRs may provide clues for the activation of the jadomycin gene cluster, which would otherwise remain silent without stimulation from stress signals.