In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linea...In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in pre- vious literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pres- sure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condi- tion. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduc- tion of analysis errors. The background error covarianee structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept 'correlation scale' is introduced. However, the new method needs further evaluation with more cases of assimilation.展开更多
Multi-service SDH networks support both packet- and circuit-switched traffic. Optimal design of such a network means to guarantee the circuit connections and configure a logical packet-switched topology with lowest co...Multi-service SDH networks support both packet- and circuit-switched traffic. Optimal design of such a network means to guarantee the circuit connections and configure a logical packet-switched topology with lowest congestion. This letter first formulates the problem as a mixed integer linear programming, which achieves optimal solution but has high computation. Then a heuristic algorithm is proposed to yield near-optimal solution efficiently. Performance of the algorithm is verified by an example.展开更多
Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity chan...Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity changes by the Gravity Recovery and Climate Experiment(GRACE) satellites,are mainly caused by precipitation,evapotranspiration,river transportation and downward infiltration processes.In this study,a land data assimilation system LDAS-G was developed to assimilate the GRACE terrestrial water storage(TWS) data into the Community Land Model(CLM3.5) using the POD-based ensemble four-dimensional variational assimilation method PODEn4 DVar,disaggregating the GRACE large-scale terrestrial water storage changes vertically and in time,and placing constraints on the simulation of vertical hydrological variables to improve land surface hydrological simulations.The ideal experiments conducted at a single point and assimilation experiments carried out over China by the LDAS-G data assimilation system showed that the system developed in this study improved the simulation of land surface hydrological variables,indicating the potential of GRACE data assimilation in large-scale land surface hydrological research and applications.展开更多
基金supported by the Provincial Science and Technology Development Program of Shandong under Grant No.2008GG10008001Key Technology Integration and Application Program of China Meteorological Administration,under Grant No.CMAGJ2011M32+1 种基金Forecaster Research Program of China Meteorological Administration,under Grant No.CMAYBY2012-031Science and Technology Research Programs of Shandong Provincial Meteorological Bureau,under Grant Nos.2012sdqxz03,2012sdqxz01,2010sdqxz01
文摘In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in pre- vious literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pres- sure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condi- tion. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduc- tion of analysis errors. The background error covarianee structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept 'correlation scale' is introduced. However, the new method needs further evaluation with more cases of assimilation.
文摘Multi-service SDH networks support both packet- and circuit-switched traffic. Optimal design of such a network means to guarantee the circuit connections and configure a logical packet-switched topology with lowest congestion. This letter first formulates the problem as a mixed integer linear programming, which achieves optimal solution but has high computation. Then a heuristic algorithm is proposed to yield near-optimal solution efficiently. Performance of the algorithm is verified by an example.
基金supported by the National Natural Science Foundation of China(Grant Nos.41075062,91125016)the National Basic Research Program of China(Grants Nos.2010CB951001,2010CB428403)
文摘Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity changes by the Gravity Recovery and Climate Experiment(GRACE) satellites,are mainly caused by precipitation,evapotranspiration,river transportation and downward infiltration processes.In this study,a land data assimilation system LDAS-G was developed to assimilate the GRACE terrestrial water storage(TWS) data into the Community Land Model(CLM3.5) using the POD-based ensemble four-dimensional variational assimilation method PODEn4 DVar,disaggregating the GRACE large-scale terrestrial water storage changes vertically and in time,and placing constraints on the simulation of vertical hydrological variables to improve land surface hydrological simulations.The ideal experiments conducted at a single point and assimilation experiments carried out over China by the LDAS-G data assimilation system showed that the system developed in this study improved the simulation of land surface hydrological variables,indicating the potential of GRACE data assimilation in large-scale land surface hydrological research and applications.