The electrocatalytic activity toward oxygen reduction reaction is studied on the perovskite oxide La~_xbrxMnt)3, as preparea under different firing temperatures. X-ray diffraction shows that three different crystal p...The electrocatalytic activity toward oxygen reduction reaction is studied on the perovskite oxide La~_xbrxMnt)3, as preparea under different firing temperatures. X-ray diffraction shows that three different crystal phases featuring tetragonal, cubic, and orthorhombic symmetries form with increasing crystallinities. The electrocatalytic activity is characterized by cyclic voltam- metry and linear sweeping voltammetry for the three phases of La1-xSrxMnO3. We find that the tetragonal phase has the best catalytic activity among the three crystal phases, with the largest onset potential of 0.147 V. The synergistic effect between the volume per unit cell and crystallinity is indicated to account for the good catalytic activity of the tetragonal phase.展开更多
基金supported by the National Basic Research Program of China(2012CB215504)the National High Technology Research and Development Program of China(2009AA034401)the National Natural Science Foundation of China(50632050)
文摘The electrocatalytic activity toward oxygen reduction reaction is studied on the perovskite oxide La~_xbrxMnt)3, as preparea under different firing temperatures. X-ray diffraction shows that three different crystal phases featuring tetragonal, cubic, and orthorhombic symmetries form with increasing crystallinities. The electrocatalytic activity is characterized by cyclic voltam- metry and linear sweeping voltammetry for the three phases of La1-xSrxMnO3. We find that the tetragonal phase has the best catalytic activity among the three crystal phases, with the largest onset potential of 0.147 V. The synergistic effect between the volume per unit cell and crystallinity is indicated to account for the good catalytic activity of the tetragonal phase.