期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于关联分析的铁路旅客同行预测方法 被引量:1
1
作者 李思颖 徐杨 +1 位作者 王欣 赵若成 《计算机科学》 CSCD 北大核心 2021年第9期95-102,共8页
随着运输技术的快速发展,铁路已成为人们出差、度假、探亲时选择的主要出行方式之一。与此同时,旅客共同出行(以下简称同行)的行为特征也越来越普遍。依据旅客间的同行关系,可以构建同行关系网络;而对该网络中潜在的链接进行预测,将有... 随着运输技术的快速发展,铁路已成为人们出差、度假、探亲时选择的主要出行方式之一。与此同时,旅客共同出行(以下简称同行)的行为特征也越来越普遍。依据旅客间的同行关系,可以构建同行关系网络;而对该网络中潜在的链接进行预测,将有助于提供个性化的服务和产品。为此,文中提出一种原创的方法,用于在旅客同行关系网络中发现潜在的同行关系。首先对传统的图模式关联规则进行扩展,提出了两类“同行图模式关联规则”,用于预测新的同行关系和未来的同行频次。然后,将上述规则挖掘计算的问题分解为频繁同行模式挖掘、规则生成以及关联分析3个子问题,并设计了有效的分布式和集中式的算法。通过在大规模真实数据集上的测试,证明了所提方法能够高效且准确地预测旅客同行关系网络中潜在的同行关系,且两类规则的预测准确率均高于50%,远高于传统方法(如Jaccard的预测准确率为24%)。 展开更多
关键词 同行预测 同行网络 关联分析 图模式匹配 同行模式
下载PDF
A Probabilistic Rating Prediction and Explanation Inference Model for Recommender Systems 被引量:3
2
作者 WANG Hanshi FU Qiujie +1 位作者 LIU Lizhen SONG Wei 《China Communications》 SCIE CSCD 2016年第2期79-94,共16页
Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming ... Collaborative Filtering(CF) is a leading approach to build recommender systems which has gained considerable development and popularity. A predominant approach to CF is rating prediction recommender algorithm, aiming to predict a user's rating for those items which were not rated yet by the user. However, with the increasing number of items and users, thedata is sparse.It is difficult to detectlatent closely relation among the items or users for predicting the user behaviors. In this paper,we enhance the rating prediction approach leading to substantial improvement of prediction accuracy by categorizing according to the genres of movies. Then the probabilities that users are interested in the genres are computed to integrate the prediction of each genre cluster. A novel probabilistic approach based on the sentiment analysis of the user reviews is also proposed to give intuitional explanations of why an item is recommended.To test the novel recommendation approach, a new corpus of user reviews on movies obtained from the Internet Movies Database(IMDB) has been generated. Experimental results show that the proposed framework is effective and achieves a better prediction performance. 展开更多
关键词 collaborative filtering recommendersystems rating prediction sentiment analysis matrix factorization recommendation explanation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部