期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于流特征模式的股市跟踪预测算法 被引量:3
1
作者 姚宏亮 杜明超 +1 位作者 李俊照 王浩 《计算机科学》 CSCD 北大核心 2013年第12期45-51,共7页
由于股市波动的突发性、多变性,且时序数据呈非正态分布,传统的时序预测模型难以有效预测股市。提出了一种基于流特征模式的股市跟踪预测算法(SFM-PG),该算法根据股票之间的相关性构建贝叶斯网络,选取目标股票的马尔科夫毯作为其同辈群... 由于股市波动的突发性、多变性,且时序数据呈非正态分布,传统的时序预测模型难以有效预测股市。提出了一种基于流特征模式的股市跟踪预测算法(SFM-PG),该算法根据股票之间的相关性构建贝叶斯网络,选取目标股票的马尔科夫毯作为其同辈群体,然后基于同辈群体之间的接近度,给出一种窗口跟踪式预测模型,其通过对同辈群体权重的动态更新进行跟踪式预测,以减少股票数据分布非正态性对预测的影响;进而,使用滑动窗口提取时序数据中的特征并形成流特征,通过与模式知识库的匹配提取流特征模式,并利用与流特征模式对应的知识调整预测结果,以减少由于突变所引入的预测误差。最后,在上证股票板块网络上的实验结果显示了算法的实用性和有效性。 展开更多
关键词 流特征 流特征模式 同辈群体分析 股市预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部