A finite p-group G is called an LA-group if |G|||Aut(G)| when G is non-cyclic and |G|>p^2. This paper shows that a p-group of order p^n with an element of order p^(n-2) is an LA-group.
Let c : SU(n) → PSU(n) = SU(n)/Zn be the quotient map of the special unitary group SU(n) by its center subgroup Z_n. We determine the induced homomorphism c*: H*(PSU(n)) → H*(SU(n)) on cohomologies by computing with...Let c : SU(n) → PSU(n) = SU(n)/Zn be the quotient map of the special unitary group SU(n) by its center subgroup Z_n. We determine the induced homomorphism c*: H*(PSU(n)) → H*(SU(n)) on cohomologies by computing with the prime orders of binomial coefficients.展开更多
文摘A finite p-group G is called an LA-group if |G|||Aut(G)| when G is non-cyclic and |G|>p^2. This paper shows that a p-group of order p^n with an element of order p^(n-2) is an LA-group.
基金supported by National Natural Science Foundation of China(Grant Nos.11131008,11401098 and 11661131004)National Basic Research Program of China(973 Program)(Grant No.2011CB302400)
文摘Let c : SU(n) → PSU(n) = SU(n)/Zn be the quotient map of the special unitary group SU(n) by its center subgroup Z_n. We determine the induced homomorphism c*: H*(PSU(n)) → H*(SU(n)) on cohomologies by computing with the prime orders of binomial coefficients.