期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
魏晋的“才性之辩” 被引量:2
1
作者 邹本顺 《人文杂志》 1982年第4期28-31,共4页
我国魏晋时期,开展了一场关于才、性问题的辩论。钟会将此次辩论的主要论点概括为“才性四本”。它是我国古代人才学的一个重要问题,本应在我国思想史上占一席重要位置。遗憾的是,关于这个问题的原著及钟会所撰的《四本论》早就遗失了,... 我国魏晋时期,开展了一场关于才、性问题的辩论。钟会将此次辩论的主要论点概括为“才性四本”。它是我国古代人才学的一个重要问题,本应在我国思想史上占一席重要位置。遗憾的是,关于这个问题的原著及钟会所撰的《四本论》早就遗失了,其他人有关这个问题的说法也大都阙而罔载,故前人鲜有论及,后人也就畏而却步。本文试从至今仍幸存的一鳞半爪的材料出发,对这场辩论的背景、内容、实质及意义,作一些分析和论证。 展开更多
关键词 才性之辩 才性四本 魏晋时期 地主阶级 考课 名实学 “唯才是举” 刘邵 《人物志》 征辟
下载PDF
Disambiguating named entities with deep supervised learning via crowd labels
2
作者 Le-kui ZHOU Si-liang TANG +2 位作者 Jun XIAO Fei WU Yue-ting ZHUANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第1期97-106,共10页
Named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the discr... Named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the discriminative features in the manner of collaborative utilization of collective wisdom (via human-labeled crowd labels) and deep learning (via human-generated data) for the NED task. In particular, we devise a crowd model to elicit the underlying features (crowd features) from crowd labels that indicate a matching candidate for each mention, and then use the crowd features to fine-tune a dynamic convolutional neural network (DCNN). The learned DCNN is employed to obtain deep crowd features to enhance traditional hand-crafted features for the NED task. The proposed method substantially benefits from the utilization of crowd knowledge (via crowd labels) into a generic deep learning for the NED task. Experimental analysis demonstrates that the proposed approach is superior to the traditional hand-crafted features when enough crowd labels are gathered. 展开更多
关键词 Named entity disambiguation Crowdsourcing Deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部