期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
多波束后向散射数据地形校正的算法研究 被引量:3
1
作者 唐麟 黄微 李先华 《测绘科学》 CSCD 北大核心 2011年第2期24-26,共3页
利用多波束反向散射数据进行海底底质分类是目前多波束声纳系统应用的一个热点研究方向。然而,由于海底不规则地形的影响,多波束声纳接收的反向散射信号,往往不能够真实表达海底底质的性质。因此,消除地形对多波束反向散射数据的影响是... 利用多波束反向散射数据进行海底底质分类是目前多波束声纳系统应用的一个热点研究方向。然而,由于海底不规则地形的影响,多波束声纳接收的反向散射信号,往往不能够真实表达海底底质的性质。因此,消除地形对多波束反向散射数据的影响是提高海底底质分类精度的一个重要步骤。本文基于多波束系统的特点,在详尽分析了地形对多波束反响散射数据影响的基础上,提出了一种多波束反向散射数据的地形校正算法。试验表明,该方法能够快速有效地消除地形对反向散射数据的影响,恢复海底底质的真实信息。 展开更多
关键词 多波束声纳 后向散射数据 地形校正
原文传递
基于激光云高仪的雾霾光学特性研究 被引量:5
2
作者 乔晓燕 张子曰 +2 位作者 李林 范雪波 于丽萍 《沙漠与绿洲气象》 2020年第3期137-143,共7页
利用2016年10月—2017年2月大兴站CL51激光云高仪资料,分析霾、雾、轻霾、轻雾和晴空等天气后向散射强度廓线特征和日变化,统计各高度层后向散射强度、后向散射强度垂直梯度的概率分布。结果表明:霾天气后向散射强度日变化不明显,雾和... 利用2016年10月—2017年2月大兴站CL51激光云高仪资料,分析霾、雾、轻霾、轻雾和晴空等天气后向散射强度廓线特征和日变化,统计各高度层后向散射强度、后向散射强度垂直梯度的概率分布。结果表明:霾天气后向散射强度日变化不明显,雾和轻雾一般发生在夜间,清晨和傍晚。雾天气后向散射强度较霾天气大,雾厚度一般不超过300 m。霾天气后向散射强度随着高度的增加减小缓慢,霾的厚度>500 m。与雾和轻雾相比,霾和轻霾天气垂直梯度绝对值取小值的概率较大。雾和轻雾天气400 m高度以上垂直梯度绝对值较小,400 m高度以下数值较大。由于霾区内粒子分布较均匀,雾区粒子分布起伏明显,所以雾天气垂直梯度绝对值出现大值的概率较霾天气高。 展开更多
关键词 激光云高仪 后向散射数据
下载PDF
Assimilation of ASAR Data with a Hydrologic and Semi-empirical Backscattering Coupled Model to Estimate Soil Moisture 被引量:3
3
作者 LIU Qian WANG Mingyu ZHAO Yingshi 《Chinese Geographical Science》 SCIE CSCD 2010年第3期218-225,共8页
The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation... The most promising approach for studying soil moisture is the assimilation of observation data and computational modeling. However, there is much uncertainty in the assimilation process, which affects the assimilation results. This research developed a one-dimensional soil moisture assimilation scheme based on the Ensemble Kalman Filter (EnKF) and Genetic Algorithm (GA). A two-dimensional hydrologic model-Distributed Hydrology-Soil-Vegetation Model (DHSVM) was coupled with a semi-empirical backscattering model (Oh). The Advanced Synthetic Aperture Radar (ASAR) data were assimilated with this coupled model and the field observation data were used to validate this scheme in the soil moisture assimilation experiment. In order to improve the assimilation results, a cost function was set up based on the distance between the simulated backscattering coefficient from the coupled model and the observed backscattering coefficient from ASAR. The EnKF and GA were used to re-initialize and re-parameterize the simulation process, respectively. The assimilation results were compared with the free-run simulations from hydrologic model and the field observation data. The results obtained indicate that this assimilation scheme is practical and it can improve the accuracy of soil moisture estimation significantly. 展开更多
关键词 Advanced Synthetic Aperture Radar (ASAR) Distributed Hydrology-Soil-Vegetation Model (DHSVM) Oh Model couple soil moisture data assimilation
下载PDF
A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas 被引量:8
4
作者 YU Fan ZHAO YingShi 《Science China Earth Sciences》 SCIE EI CAS 2011年第12期1955-1964,共10页
Active microwave and passive optical remote sensing data have demonstrated their respective advantages in inversion of surface soil moisture content. A new semi-empirical model is presented for soil moisture content r... Active microwave and passive optical remote sensing data have demonstrated their respective advantages in inversion of surface soil moisture content. A new semi-empirical model is presented for soil moisture content retrieval in vegetation-covered areas, using ENVISAT-ASAR and LANDSAT-TM data collaboratively. Derivation of the algorithm is based on simplification of the Michigan Microwave Canopy Scattering Model (MIMICS). In the model, the ground surface is divided into a canopy layer and a soil layer, and empirical relationships simulated among vegetation water mass We, the backscatter coefficient σpq1, the bidirectional scattering coefficient σpq2 and the extinction coefficient τp. The key input parameters of the semi-empirical model are reduced to only the leaf area index (LAI), which can be easily inverted by the optical model PROSAIL, allowing coupling of the microwave and optical models to be achieved. Also, vegetation RMS height (Svcg) is introduced to correct for the radar-shadow effect caused by over-laying vegetation. Analysis of the parameter sensitivity of the semi-empirical model showed that when the regional Leaf Area Index is small (LAI≤3), the model is more applicable. Soil moisture distribution in the study area was mapped using the semi-empirical model and field ground measurements used for model validation. This showed that, after correction of the radar-shadow effect, the average relative error (Er) between ground-measured and semi-empirical model-derived estimates of soil moisture decreased from 17.6% to 10.4%, while the RMS reduced from 0.055 to 0.031 g cm^-3. The accuracy of soil moisture estimates from the semi-empirical model is much better than for the MIMICS model (Er = 22.7%, RMS = 0.068 g cm^-3), showing that the semi-empirical model is efficient at obtaining regional surface soil moisture contents when LAI is small. 展开更多
关键词 microwave and optic remote sensing MIMICS PROSAIL soil moisture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部