[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a sup...[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a super-high yielded region of summer maize, field experiment was conducted to research effects of N fertilizer postponing on key enzymes of N metabolism, yield of maize and N fertilizer use. [Result] After application of N fertilizer was postponed, NR, SPS and GS activities of ear-leaf of summer maize increased by 11.99%-34.87%, 8.25%-10.64% and 10.00%- 16.81% on the 28^th d of silking; content of soluble sugar in leaves enhanced signifi- cantly and accumulated nitrogen increased by 5.00%-9.74% in mature stage. The postponing fertilization of "30% of fertilizer in seedling stage+30% of fertilizer in flare- opening stage+40% of fertilizer in silking stage meets N demands of summer maize in late growth period. Compared with conventional fertilization, the maize yield, agro- nomic efficiency and use of N fertilizer all improved by 5.05%, 1.75 kg/kg and 6.87%, respectively, after application postponed. [Conclusion] Application postponing of N fertilizer maintains activity of NR, GS and SPS higher and coordinates metabolism of C and N in late growth period, to further improve yield of maize.展开更多
It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more...It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more water vapor transport during summer, as well as early and middle summer. However, the present results indicate that during late summer(from mid-August to the beginning of September), the anomalous anticyclone leads to more rainfall over central southern China(CSC), a region quite different from preceding periods. The uniqueness of late summer is found to be related to the dramatic change in climatological monsoon flows: southerlies over southern China during early and middle summer but easterlies during late summer. Therefore, the anomalous anticyclone, which shows a southerly anomaly over southern China, enhances monsoonal southerlies and induces more rainfall along the rain band during early and middle summer. During late summer,however, the anomalous anticyclone reflects a complicated change in monsoon flows: it changes the path, rather than the intensity, of monsoon flows. Specifically, during late summers of suppressed convection in the tropical WNP, southerlies dominate from the South China Sea to southern China, and during late summers of enhanced convection, northeasterlies dominate from the East China Sea to southern China, causing more and less rainfall in CSC, respectively.展开更多
基金Crop Harvest Technology and Engineering in the Twelfth Five-year Plan (2011BAD16B15-2)Special Foundation of National Modern Maize Industrial Technology System(nycytx-02-17)Cooperation Project of China-International Plant Nutrition Research Institute (NMBF-HenanAU-2009)~~
文摘[Objective] The aim was to explore effects of application postponing of N fertilizer and the mechanism of yield increase in order to provide references for N fertilizer application in a rational way. [Method] In a super-high yielded region of summer maize, field experiment was conducted to research effects of N fertilizer postponing on key enzymes of N metabolism, yield of maize and N fertilizer use. [Result] After application of N fertilizer was postponed, NR, SPS and GS activities of ear-leaf of summer maize increased by 11.99%-34.87%, 8.25%-10.64% and 10.00%- 16.81% on the 28^th d of silking; content of soluble sugar in leaves enhanced signifi- cantly and accumulated nitrogen increased by 5.00%-9.74% in mature stage. The postponing fertilization of "30% of fertilizer in seedling stage+30% of fertilizer in flare- opening stage+40% of fertilizer in silking stage meets N demands of summer maize in late growth period. Compared with conventional fertilization, the maize yield, agro- nomic efficiency and use of N fertilizer all improved by 5.05%, 1.75 kg/kg and 6.87%, respectively, after application postponed. [Conclusion] Application postponing of N fertilizer maintains activity of NR, GS and SPS higher and coordinates metabolism of C and N in late growth period, to further improve yield of maize.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41721004 and 41320104007)
文摘It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more water vapor transport during summer, as well as early and middle summer. However, the present results indicate that during late summer(from mid-August to the beginning of September), the anomalous anticyclone leads to more rainfall over central southern China(CSC), a region quite different from preceding periods. The uniqueness of late summer is found to be related to the dramatic change in climatological monsoon flows: southerlies over southern China during early and middle summer but easterlies during late summer. Therefore, the anomalous anticyclone, which shows a southerly anomaly over southern China, enhances monsoonal southerlies and induces more rainfall along the rain band during early and middle summer. During late summer,however, the anomalous anticyclone reflects a complicated change in monsoon flows: it changes the path, rather than the intensity, of monsoon flows. Specifically, during late summers of suppressed convection in the tropical WNP, southerlies dominate from the South China Sea to southern China, and during late summers of enhanced convection, northeasterlies dominate from the East China Sea to southern China, causing more and less rainfall in CSC, respectively.