固液耦合作用是碎屑流向泥石流转化形成复合型滑坡灾害的关键因素,会导致成灾范围和规模放大,是防灾减灾领域研究中的热点和难点问题之一。文中采用自主研发的滑坡后破坏数值模拟平台(LPF 3D,Landslides post failure 3D),以2014年9月...固液耦合作用是碎屑流向泥石流转化形成复合型滑坡灾害的关键因素,会导致成灾范围和规模放大,是防灾减灾领域研究中的热点和难点问题之一。文中采用自主研发的滑坡后破坏数值模拟平台(LPF 3D,Landslides post failure 3D),以2014年9月强降雨诱发的重庆奉节无山坪滑坡为例,探讨了滑坡在水动力作用下远程成灾的动力过程,揭示了固液耦合影响机制。研究结果显示:水动力作用在滑坡运动过程中主要体现为液化和拖曳两种,两种力学作用的增程效应明显,往往使得碎屑流转化为泥石流,导致远程成灾;基于光滑粒子流体动力学(SPH)方法的两相耦合计算模型,考虑流体状态方程、固体黏塑性本构方程和相间作用力的共同影响,基本还原了强降雨条件下重庆奉节无山坪滑坡两相运动过程;数值计算结果显示无山坪滑坡最大运动速度为34 m/s,最大堆积厚度为21.5 m,堆积面积为0.12 km 2,最远运动距离为1300 m,模拟结果同实际滑坡的堆积形态基本一致。综上认为,在高位远程滑坡风险调查与预测过程中,需充分考虑强降雨工况下孔隙水压力和固液相间作用,基于LPF 3D方法的数值模拟为高位远程滑坡的风险定量评估提供了依据。展开更多
In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized m...In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized measurement devices including a high-speed camera and a dynamic strain meter. The experimental results show that the specimens were in the state of good stress equilibrium during the post failure stage even when visible cracks were forming in the specimens. Rock specimens broke into strips but still could bear the external stress and keep force balance. Meanwhile, numerical tests with particle flow code (PFC) revealed that the failure process of rocks can be described by the evolution of micro-fractures. Shear cracks emerged firstly and stopped developing when the external stress was not high enough. Tensile cracks, however, emerged when the rock specimen reached its peak strength and played an important role in controlling the ultimate failure during the post failure stage.展开更多
基金Project(2015CB060200)supported by the National Basic Research and Development Program of ChinaProjects(51322403,51274254)supported by the National Natural Science Foundation of China
文摘In order to investigate the micro-process and inner mechanism of rock failure under impact loading, the laboratory tests were carried out on an improved split Hopkinson pressure bar (SHPB) system with synchronized measurement devices including a high-speed camera and a dynamic strain meter. The experimental results show that the specimens were in the state of good stress equilibrium during the post failure stage even when visible cracks were forming in the specimens. Rock specimens broke into strips but still could bear the external stress and keep force balance. Meanwhile, numerical tests with particle flow code (PFC) revealed that the failure process of rocks can be described by the evolution of micro-fractures. Shear cracks emerged firstly and stopped developing when the external stress was not high enough. Tensile cracks, however, emerged when the rock specimen reached its peak strength and played an important role in controlling the ultimate failure during the post failure stage.