Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid...Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.展开更多
Estimation method of building damage level was introduced for the accurate and effective estimation of damage extent and relief goods demand according to long-distance image contrast. In order to obtain completion deg...Estimation method of building damage level was introduced for the accurate and effective estimation of damage extent and relief goods demand according to long-distance image contrast. In order to obtain completion degree of building edge extracted from long-distance images before and after disaster, the concentration ratio was analyzed with Hough transformation. Based on the maximum posterior probability, estimation method of affected population was designed to accurately estimate victim population, which can be directly reflected by fugitive population. Moreover, on basis of escape route and fugitive population, demand assignment algorithm by backward calculation was designed to improve rescue efficiency.展开更多
In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis sh...In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.展开更多
This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||...This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.展开更多
This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error...This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.展开更多
This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimat...This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument. With the help of the a posteriori error estimator developed in this work, we will further propose an adaptive time stepping strategy. A number of numerical experiments are performed to illustrate the reliability and efficiency of the a posteriori error estimates and to assess the effectiveness of the proposed adaptive time stepping method.展开更多
In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergenc...In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.展开更多
An existing Bayesian flood frequency analysis method is applied to quantile estimation for Pearson type three (P-III) probability distribution. The method couples prior and sample information under the framework of Ba...An existing Bayesian flood frequency analysis method is applied to quantile estimation for Pearson type three (P-III) probability distribution. The method couples prior and sample information under the framework of Bayesian formula, and the Markov Chain Monte Carlo (MCMC) sampling approach is used to estimate posterior distributions of parameters. Different from the original sampling algorithm (i.e. the important sampling) used in the existing approach, we use the adaptive metropolis (AM) sampling technique to generate a large number of parameter sets from Bayesian parameter posterior distributions in this paper. Consequently, the sampling distributions for quantiles or the hydrological design values are constructed. The sampling distributions of quantiles are estimated as the Bayesian method can provide not only various kinds of point estimators for quantiles, e.g. the expectation estimator, but also quantitative evaluation on uncertainties of these point estimators. Therefore, the Bayesian method brings more useful information to hydrological frequency analysis. As an example, the flood extreme sample series at a gauge are used to demonstrate the procedure of application.展开更多
基金Projects(2006AA06Z105, 2007AA06Z134) supported by the National High-Tech Research and Development Program of ChinaProjects(2007, 2008) supported by China Scholarship Council (CSC)
文摘Based on the fact that 3-D model discretization by artificial could not always be successfully implemented especially for large-scaled problems when high accuracy and efficiency were required, a new adaptive multigrid finite element method was proposed. In this algorithm, a-posteriori error estimator was employed to generate adaptively refined mesh on a given initial mesh. On these iterative meshes, V-cycle based multigrid method was adopted to fast solve each linear equation with each initial iterative term interpolated from last mesh. With this error estimator, the unknowns were nearly optimally distributed on the final mesh which guaranteed the accuracy. The numerical results show that the multigrid solver is faster and more stable compared with ICCG solver. Meanwhile, the numerical results obtained from the final model discretization approximate the analytical solutions with maximal relative errors less than 1%, which remarkably validates this algorithm.
文摘Estimation method of building damage level was introduced for the accurate and effective estimation of damage extent and relief goods demand according to long-distance image contrast. In order to obtain completion degree of building edge extracted from long-distance images before and after disaster, the concentration ratio was analyzed with Hough transformation. Based on the maximum posterior probability, estimation method of affected population was designed to accurately estimate victim population, which can be directly reflected by fugitive population. Moreover, on basis of escape route and fugitive population, demand assignment algorithm by backward calculation was designed to improve rescue efficiency.
基金supported partially by the innovation fund of Shanghai Normal Universitysupported partially by NSERC of Canada under Grant OGP0046726.
文摘In this paper, a-posteriori error estimators are proposed for the Legendre spectral Galerkin method for two-point boundary value problems. The key idea is to postprocess the Galerkin approximation, and the analysis shows that the postproeess improves the order of convergence. Consequently, we obtain asymptotically exact aposteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.
基金supported by National Science Foundation of ChinaFoundation for Talent Introduction of Guangdong Provincial University+2 种基金Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provincial Innovation Foundation for Postgraduate under Grant(1x2009B120)
文摘This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.
文摘This paper extends the unifying theory for a posteriori error analysis of the nonconformingfinite element methods to the second order elliptic eigenvalue problem.In particular,the authorproposes the a posteriori error estimator for nonconforming methods of the eigenvalue problems andprove its reliability and efficiency based on two assumptions concerning both the weak continuity andthe weak orthogonality of the nonconforming finite element spaces,respectively.In addition,the authorexamines these two assumptions for those nonconforming methods checked in literature for the Laplace,Stokes,and the linear elasticity problems.
基金supported by National Natural Science Foundation of China(Grant Nos.1117121911161130004 and 11101199)+1 种基金E-Institutes of Shanghai Municipal Education Commission(Grant No.E03004)Program for New Century Excellent Talents in Fujian Province University(Grant No.JA12260)
文摘This work is concerned with time stepping finite element methods for abstract second order evolution problems. We derive optimal order a posteriori error estimates and a posteriori nodal superconvergence error estimates using the energy approach and the duality argument. With the help of the a posteriori error estimator developed in this work, we will further propose an adaptive time stepping strategy. A number of numerical experiments are performed to illustrate the reliability and efficiency of the a posteriori error estimates and to assess the effectiveness of the proposed adaptive time stepping method.
基金supported by National Natural Science Foundation of China(Grant Nos.11001259,11031006,11071265,11201501 and 91230110)National Basic Research Program of China(973 Project)(Grant No. 2011CB309703)+3 种基金International S&T Cooperation Program of China(Grant No. 2010DFR00700)Croucher Foundation of Hong Kong Baptist Universitythe National Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CASthe Fundamental Research Funds for the CentralUniversities(Grant No. 2012121003)
文摘In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.
基金supported by the National Basic Research Pro-gram of China ("973" Program) (Grant No. 2007CB714104)the National Natural Science Foundation of China (Grant No. 50779013)
文摘An existing Bayesian flood frequency analysis method is applied to quantile estimation for Pearson type three (P-III) probability distribution. The method couples prior and sample information under the framework of Bayesian formula, and the Markov Chain Monte Carlo (MCMC) sampling approach is used to estimate posterior distributions of parameters. Different from the original sampling algorithm (i.e. the important sampling) used in the existing approach, we use the adaptive metropolis (AM) sampling technique to generate a large number of parameter sets from Bayesian parameter posterior distributions in this paper. Consequently, the sampling distributions for quantiles or the hydrological design values are constructed. The sampling distributions of quantiles are estimated as the Bayesian method can provide not only various kinds of point estimators for quantiles, e.g. the expectation estimator, but also quantitative evaluation on uncertainties of these point estimators. Therefore, the Bayesian method brings more useful information to hydrological frequency analysis. As an example, the flood extreme sample series at a gauge are used to demonstrate the procedure of application.