We study multi-parameter regularization(multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regu...We study multi-parameter regularization(multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.展开更多
The authors first prove a convergence result on the Ka(?)anov method for solving generalnonlinear variational inequalities of the second kind and then apply the Kacanov method tosolve a nonlinear variational inequalit...The authors first prove a convergence result on the Ka(?)anov method for solving generalnonlinear variational inequalities of the second kind and then apply the Kacanov method tosolve a nonlinear variational inequality of the second kind arising in elastoplasticity. In additionto the convergence result, an a posteriori error estimate is shown for the Kacanov iterates. Ineach step of the Ka(?)anov iteration, one has a (linear) variational inequality of the secondkind, which can be solved by using a regularization technique. The Ka(?)anov iteration andthe regularization technique together provide approximations which can be readily computednumerically. An a posteriori error estimate is derived for the combined effect of the Ka(?)anoviteration and the regularization.展开更多
基金supported by the Army Research Office under DAAD19-02-1-0394,US-ARO grant 49308MA and US-AFSOR grant FA9550-06-1-0241
文摘We study multi-parameter regularization(multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.
基金Project supported by the ONR grant N00014-90-J-1238
文摘The authors first prove a convergence result on the Ka(?)anov method for solving generalnonlinear variational inequalities of the second kind and then apply the Kacanov method tosolve a nonlinear variational inequality of the second kind arising in elastoplasticity. In additionto the convergence result, an a posteriori error estimate is shown for the Kacanov iterates. Ineach step of the Ka(?)anov iteration, one has a (linear) variational inequality of the secondkind, which can be solved by using a regularization technique. The Ka(?)anov iteration andthe regularization technique together provide approximations which can be readily computednumerically. An a posteriori error estimate is derived for the combined effect of the Ka(?)anoviteration and the regularization.