期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于太赫兹时域光谱技术与PCA-BPN网络的转基因大豆鉴别(英文) 被引量:7
1
作者 聂君扬 张文涛 +3 位作者 熊显名 陈涛 占平平 涂闪 《光子学报》 EI CAS CSCD 北大核心 2016年第5期161-167,共7页
基于太赫兹波段内的光谱分析技术以及主成分特性分析与反向前馈神经网络建模,提出了一种转基因大豆鉴别方法.从光谱数据中提取累计方差贡献率达到97.582%的前8种主成分因子,并将其作为输入源导入神经网络模型,通过剔除冗余数据、降低数... 基于太赫兹波段内的光谱分析技术以及主成分特性分析与反向前馈神经网络建模,提出了一种转基因大豆鉴别方法.从光谱数据中提取累计方差贡献率达到97.582%的前8种主成分因子,并将其作为输入源导入神经网络模型,通过剔除冗余数据、降低数据维数,所建立的神经网络模型能准确识别校验集.该方法可以实现转基因大豆的快速、无损检测,在农业安全领域有广泛的应用前景. 展开更多
关键词 转基因大豆 太赫兹 主成分分析 向前神经网络 无损检测
下载PDF
多层组合分类器研究 被引量:8
2
作者 蒋艳凰 杨学军 《计算机工程与科学》 CSCD 2004年第6期67-69,76,共4页
为了提高监督分类的精度,本文从组合分类器的结构出发,提出一种横向多层组合模型,并对这种模型的运行方式与组合特性进行分析。该模型每层含有一个分类器,每个分类器的输入和输出一起作为其后面一层的输入。我们将简单贝叶斯法与BP神经... 为了提高监督分类的精度,本文从组合分类器的结构出发,提出一种横向多层组合模型,并对这种模型的运行方式与组合特性进行分析。该模型每层含有一个分类器,每个分类器的输入和输出一起作为其后面一层的输入。我们将简单贝叶斯法与BP神经网络组合成两层分类器。实验结果表明,这种组合方式有效地提高了单个方法的分类精度。 展开更多
关键词 学习算法 多层组合分类器 监督学习 向前神经网络
下载PDF
A REALIZATION OF FUZZY LOGIC BY A NEURAL NETWORK 被引量:1
3
作者 杨忠 鲍明 赵淳生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期104-108,共5页
This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and N... This paper proposes a Fuzzy Neural Network (FNN) model, which uses a propagation algorithm. A logical operation is defined by a set of weights which are independent of inputs. The realization of the basic And,Or and Negation fuzzy logical operations is shown by the fuzzy neuron. A example in fault diagnosis is put forward and the result witnesses some effectiveness of the new FNN model. 展开更多
关键词 fuzzy logic NEURON neural network propagation algorithm fault diagnosis
下载PDF
基于深度学习的目标检测算法研究与应用 被引量:2
4
作者 邝熠 陶果 +1 位作者 朱玉洁 蔡伟立 《计算机产品与流通》 2020年第1期241-241,共1页
本文基于深度学习和机器学习的基本理论,对人体处于静态或动态时的位置变化、姿态检测进行了相应的研究。利用各帧图像中人体关节所处位置、同一个体的同一骨骼上的关节点连接原则、不同个体骨骼上的关节点排斥原则、人体位置关系重叠... 本文基于深度学习和机器学习的基本理论,对人体处于静态或动态时的位置变化、姿态检测进行了相应的研究。利用各帧图像中人体关节所处位置、同一个体的同一骨骼上的关节点连接原则、不同个体骨骼上的关节点排斥原则、人体位置关系重叠下热力图,模拟实现了人体处于不同状态下的姿态检测。 展开更多
关键词 卷积神经网络 向前神经网络 人体姿态检测 热力图
下载PDF
Generalization Capabilities of Feedforward Neural Networks for Pattern Recognition
5
作者 黄德双 《Journal of Beijing Institute of Technology》 EI CAS 1996年第2期192+184-192,共10页
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th... This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs. 展开更多
关键词 feedforward neural networks radial basis function networks multilayer perceptronnetworks generalization capability radar target classification
下载PDF
Application of neural network in the study of combustion rate of natural gas/diesel dual fuel engine 被引量:1
6
作者 严兆大 周重光 +2 位作者 苏石川 刘震涛 王希珍 《Journal of Zhejiang University Science》 EI CSCD 2003年第2期170-174,共5页
In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect ... In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operatin g parameters on combustion rate was also studied by means of this model. The stu dy showed that the predicted results were good agreement with the experimental d a ta. It was proved that the developed combustion rate model could be used to succ essfully predict and optimize the combustion process of dual fuel engine. 展开更多
关键词 Dual fuel engine Forward neural network Rate of combu stion
下载PDF
Using hybrid models to predict blood pressure reactivity to unsupported back based on anthropometric characteristics 被引量:1
7
作者 Gurmanik KAUR Ajat Shatru ARORA Vijender Kumar JAIN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第6期474-485,共12页
Accurate blood pressure (BP) measurement is essential in epidemiological studies, screening programmes, and research studies as well as in clinical practice for the early detection and prevention of high BP-related ... Accurate blood pressure (BP) measurement is essential in epidemiological studies, screening programmes, and research studies as well as in clinical practice for the early detection and prevention of high BP-related risks such as coronary heart disease, stroke, and kidney failure. Posture of the participant plays a vital role in accurate measurement of BP. Guidelines on measurement of BP contain recommendations on the position of the back of the participants by advising that they should sit with supported back to avoid spuriously high readings. In this work, principal component analysis (PCA) is fused with forward stepwise regression (SWR), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and the least squares support vector machine (LS-SVM) model for the prediction of BP reactivity to an unsupported back in norrnotensive and hypertensive participants. PCA is used to remove multi-collinearity among anthropometric predictor variables and to select a subset of components, termed 'principal components' (PCs), from the original dataset. The selected PCs are fed into the proposed models for modeling and testing. The evaluation of the performance of the constructed models, using appropriate statistical indices, shows clearly that a PCA-based LS-SVM (PCA-LS-SVM) model is a promising approach for the prediction of BP reactivity in comparison to others. This assessment demonstrates the importance and advantages posed by hybrid models for the prediction of variables in biomedical research studies. 展开更多
关键词 Blood pressure (BP) Principal component analysis (PCA) Forward stepwise regression Artificial neural network(ANN) Adaptive neuro-fuzzy inference system (ANFIS) Least squares support vector machine (LS-SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部