A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The...A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V.展开更多
By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation a...By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.展开更多
Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method wa...Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity increases and reaches the maximum value at anisotropy strength of 0.04, then decreases.展开更多
Based on the statistical analysis of blocking effect arising from anisotropic growth,the anisotropic effect on the kinetics of solid-state transformation was investigated.The result shows that the blocking effect lead...Based on the statistical analysis of blocking effect arising from anisotropic growth,the anisotropic effect on the kinetics of solid-state transformation was investigated.The result shows that the blocking effect leads to the retardation of transformation and then a regular behavior of varying Avrami exponent.Following previous analytical model,the formulations of Avrami exponent and effective activation energy accounting for blocking effect were obtained.The anisotropic effect on the transformation depends on two factors,non-blocking factor γ and blocking scale k,which directly acts on the dimensionality of growth.The effective activation energy is not affected by the anisotropic effect.The evolution of anisotropic effect with the fraction transformed is taken into account,showing that the anisotropic effect is more severe at the middle stage of transformation.展开更多
Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yiel...Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.展开更多
Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the ...Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics.展开更多
Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermedi...Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermediate range of Lsi between 1.9 nm-2.9 nm for samples with LGe fixed at 1.5 ml. In contrast to a pure-Ge/Si quantum well, the energy of the band shows red-shift as Lsi increases. Raman scattering shows that Si-Si vibration related Raman shift reaches a minimum for samples with strongest PL intensity of the abnormal band. It is therefore concluded that the abnormal band is related with strain relaxation process.展开更多
Temperature effect (200-400 ℃) on the anisotropic crystal growth of boehmite under hydrothermal conditions with and without octanoic acid was investigated. The crystallinity and the size of particles increased with...Temperature effect (200-400 ℃) on the anisotropic crystal growth of boehmite under hydrothermal conditions with and without octanoic acid was investigated. The crystallinity and the size of particles increased with increasing the treatment temperature. The crystal growth was facilitated greatly above the critical temperature of water. Although several possible factors could affect the crystal growth behavior, the experimental results were discussed in terms of water properties, such as dielectric constant and viscosity The crystallization was enhanced when the viscosity and dielectric constant of water were low. The viscosity reduction at higher temperature may enhance diffusion and crystallization, in particular, without octanoic acid. The enhancement of crystallization at lower dielectric constant implies that the formation of particles, which are less polar than precursor ions, favorably proceeds in such media. The crystal growth along c-axis showed less temperature dependence around the critical temperature in the experiments with octanoic acid, which suggests that the modification reaction on the (001) surface was also facilitated because the modification reaction forms less polar products. This is probably the reason why the aspect ratio (a/c) was considerably higher for the products obtained with the treatments above the critical temperature.展开更多
Triple-negative breast cancers (TNBCs) neither express estrogen receptor and progesterone receptor nor over- express human epidermal growth factor receptor-2. Because of the special molecular features, triple-negative...Triple-negative breast cancers (TNBCs) neither express estrogen receptor and progesterone receptor nor over- express human epidermal growth factor receptor-2. Because of the special molecular features, triple-negative breast cancer is not either sensitive to endocrine therapy or targeted therapy of trastuzumab. There has not been standard treatment regimen for triple-negative breast cancer yet and chemotherapy has still been the chief therapy currently. However, with the great progress of oncology and molecular biology, the understanding of the natural history, pathophysiology and molecular features of this disease has been greatly improved, and a growing number of novel and effective therapies and discoveries of new biological targets for this phenotype of breast cancers have been reported, which provide new insights into therapeutic strategies for the women suffering from it.展开更多
Abstract In this study, the method of divergent selection was employed to test the larval and juvenile growth performance within a full-sib family of Manila clam Ruditapes philippinarum. The 10% largest and 10% smalle...Abstract In this study, the method of divergent selection was employed to test the larval and juvenile growth performance within a full-sib family of Manila clam Ruditapes philippinarum. The 10% largest and 10% smallest clam individuals (on the basis of shell length) of a full-sib family were selected as parents for the fast and slow growing lines, respectively. The difference in shell length was significant among the three lines (fast, control, and slow) tested. The sequence of shell length were fast line 〉 control line 〉 slow line. The responses to selection, realized heritability, and genetic gain were 0.06%-0.81%, 0.04%-0.47% and 0.58%-18.89% in the fast direction, respectively; and were 0.14%-1.27%, 0.08%-0.73%, and 0.31%-49.03% in the slow direction, respectively. The re- suits suggested that there was a large portion of additive genetic variance affecting the growth in the full-sib family. Selection in the fast direction within the full-sib family would greatly improve the growth ofR. philippinarum.展开更多
The stability range of primary spacing of the tilted dendritic arrays in directional solidification has been studied by quantitative phase-field simulations. Results show that both the real growth direction and morpho...The stability range of primary spacing of the tilted dendritic arrays in directional solidification has been studied by quantitative phase-field simulations. Results show that both the real growth direction and morphological shapes of dendritic arrays change with the primary spacing for different misorientation angles(θ0). It has been found that the lower limit of primary spacing is independent of θ0, but the upper limit of primary spacing is strongly influenced by that. The two kinds of tertiary branching instabilities result in different behaviors of the variation of the upper limit with misorientation angle for different pulling velocities.展开更多
CaBi2Nb2O9 (CBNO) ceramics was prepared at 1050℃ using regular flake-like CBNO powders as the precursor, and synthe-sized by the molten salts synthesis method. The tropism degree and microstructure of the ceramics we...CaBi2Nb2O9 (CBNO) ceramics was prepared at 1050℃ using regular flake-like CBNO powders as the precursor, and synthe-sized by the molten salts synthesis method. The tropism degree and microstructure of the ceramics were analyzed, and the die-lectric, ferroelectric and piezoelectric properties were characterized. Compared with conventional methods, the properties of CBNO ceramics by the new preparation method were found to be better. As the sinter temperature decreases, the grain growth becomes regular with textured features. The polarization process becomes easy to be realized at room temperature. Moreover, the dielectric loss decreases and the piezoelectric constant increases significantly.展开更多
Single-walled carbon nanotubes(SWNTs)are regarded as one of the most promising candidates as building blocks in the next generation electronics.The most advanced opportunities demand the ability to form perfectly al...Single-walled carbon nanotubes(SWNTs)are regarded as one of the most promising candidates as building blocks in the next generation electronics.The most advanced opportunities demand the ability to form perfectly aligned,horizontal arrays of SWNTs with a uniform structure.However,synthesizing them by conventional chemical vapor deposition(CVD)methods would result in poorly-aligned nanotubes with a variety of chiral species,展开更多
基金Projects(51075335,10902086,50875217) supported by the National Natural Science Foundation of ChinaProject(JC201005) supported by the Northwestern Polytechnical University Foundation for Fundamental Research,ChinaProject(CX201007) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V.
基金Projects(51371081,11427806,51471067,51171063) supported by the National Natural Science Foundation of ChinaProject(2009CB623704) supported by the National Basic Research Program of China
文摘By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.
基金Project(10834015)supported by the National Natural Science Foundation of ChinaProject(12SKY01-1)supported by the Doctoral Fund of Shangluo University,China
文摘Based on the Karma model and the Eggleston regularization technique of the strong interfacial energy anisotropy, a phase-field model was established for HCP materials. An explicit finite difference numerical method was used to solve phase field model and simulate the dendrite growth behaviors of HCP materials. Results indicate that the dendrite morphology presents obvious six-fold symmetry, and discontinuity in the variation of interface orientation occurs, resulting in a fact that the corners were formed at the tips of the main stem and side branches. When the interfacial energy anisotropy strength is lower than the critical value(1/35), the steady-state tip velocity of dendrite increases with anisotropy as expected. As the anisotropy strength crosses the critical value, the steady-state tip velocity drops down by about 0.89%. With further increase in anisotropy strength, the steady-state tip velocity increases and reaches the maximum value at anisotropy strength of 0.04, then decreases.
基金Project (2011CB610403) supported by the National Basic Research Program of ChinaProject (51125002) supported by the National Funds for Distinguished Young Scientists of China+2 种基金Project (51071127) supported by the National Natural Science Foundation of ChinaProjects (09-QZ-2008,24-TZ-2009) supported by the Free Research Fund of State Key Laboratory of Solidification Processing,ChinaProject (CX201008) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘Based on the statistical analysis of blocking effect arising from anisotropic growth,the anisotropic effect on the kinetics of solid-state transformation was investigated.The result shows that the blocking effect leads to the retardation of transformation and then a regular behavior of varying Avrami exponent.Following previous analytical model,the formulations of Avrami exponent and effective activation energy accounting for blocking effect were obtained.The anisotropic effect on the transformation depends on two factors,non-blocking factor γ and blocking scale k,which directly acts on the dimensionality of growth.The effective activation energy is not affected by the anisotropic effect.The evolution of anisotropic effect with the fraction transformed is taken into account,showing that the anisotropic effect is more severe at the middle stage of transformation.
基金grants from the Ministry of Science and Technology of China(2005CB 1208)the National Natural Science Foundation of China(30330040 and 30570161).
文摘Tiller angle of rice (Oryza sativa L.) is an important agronomic trait that contributes to grain production, and has long attracted attentions of breeders for achieving ideal plant architecture to improve grain yield. Although enormous efforts have been made over the past decades to study mutants with extremely spreading or compact tillers, the molecular mechanism underlying the control of tiller angle of cereal crops remains unknown. Here we report the cloning of the LAZY1 (LA1) gene that regulates shoot gravitropism by which the rice tiller angle is controlled. We show that LA1, a novel grass-specific gene, is temporally and spatially expressed, and plays a negative role in polar auxin transport (PAT). Loss-of-function of LA1 enhances PAT greatly and thus alters the endogenous IAA distribution in shoots, leading to the reduced gravitropism, and therefore the tiller-spreading phenotype of rice plants.
基金Project(10834015) supported by the National Natural Science Foundation of ChinaProject(12SKY01-1) supported by the Doctoral Fund of Shangluo University,ChinaProject(14JK1223) supported by the Scientific Research Program of Shaanxi Provincial Education Department,China
文摘Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics.
文摘Pure-Ge/Si short period superlattice (SPS) grown by gas source MBE (GSMBE) is studied by photoluminescence spectroscopy and Raman scattering spectroscopy. An abnormal band in photoluminescence is found in an intermediate range of Lsi between 1.9 nm-2.9 nm for samples with LGe fixed at 1.5 ml. In contrast to a pure-Ge/Si quantum well, the energy of the band shows red-shift as Lsi increases. Raman scattering shows that Si-Si vibration related Raman shift reaches a minimum for samples with strongest PL intensity of the abnormal band. It is therefore concluded that the abnormal band is related with strain relaxation process.
文摘Temperature effect (200-400 ℃) on the anisotropic crystal growth of boehmite under hydrothermal conditions with and without octanoic acid was investigated. The crystallinity and the size of particles increased with increasing the treatment temperature. The crystal growth was facilitated greatly above the critical temperature of water. Although several possible factors could affect the crystal growth behavior, the experimental results were discussed in terms of water properties, such as dielectric constant and viscosity The crystallization was enhanced when the viscosity and dielectric constant of water were low. The viscosity reduction at higher temperature may enhance diffusion and crystallization, in particular, without octanoic acid. The enhancement of crystallization at lower dielectric constant implies that the formation of particles, which are less polar than precursor ions, favorably proceeds in such media. The crystal growth along c-axis showed less temperature dependence around the critical temperature in the experiments with octanoic acid, which suggests that the modification reaction on the (001) surface was also facilitated because the modification reaction forms less polar products. This is probably the reason why the aspect ratio (a/c) was considerably higher for the products obtained with the treatments above the critical temperature.
文摘Triple-negative breast cancers (TNBCs) neither express estrogen receptor and progesterone receptor nor over- express human epidermal growth factor receptor-2. Because of the special molecular features, triple-negative breast cancer is not either sensitive to endocrine therapy or targeted therapy of trastuzumab. There has not been standard treatment regimen for triple-negative breast cancer yet and chemotherapy has still been the chief therapy currently. However, with the great progress of oncology and molecular biology, the understanding of the natural history, pathophysiology and molecular features of this disease has been greatly improved, and a growing number of novel and effective therapies and discoveries of new biological targets for this phenotype of breast cancers have been reported, which provide new insights into therapeutic strategies for the women suffering from it.
基金supported by the grant from the Natural National Science Foundation of China (No.31502163)the fund earmarked for Modern Agro-industry Technology Research System (CARS-48)the Natural Science Foundation Grant of Tianjin (No.15JCYBJC30400)
文摘Abstract In this study, the method of divergent selection was employed to test the larval and juvenile growth performance within a full-sib family of Manila clam Ruditapes philippinarum. The 10% largest and 10% smallest clam individuals (on the basis of shell length) of a full-sib family were selected as parents for the fast and slow growing lines, respectively. The difference in shell length was significant among the three lines (fast, control, and slow) tested. The sequence of shell length were fast line 〉 control line 〉 slow line. The responses to selection, realized heritability, and genetic gain were 0.06%-0.81%, 0.04%-0.47% and 0.58%-18.89% in the fast direction, respectively; and were 0.14%-1.27%, 0.08%-0.73%, and 0.31%-49.03% in the slow direction, respectively. The re- suits suggested that there was a large portion of additive genetic variance affecting the growth in the full-sib family. Selection in the fast direction within the full-sib family would greatly improve the growth ofR. philippinarum.
基金supported by the National Natural Science Foundation of China(Grant Nos.61078057 and 51172183)the Natural Science Foundation of Shaanxi Province in China(Grant No.2012JQ8013)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.3102014KYJD026 and JC20120246)the grant from the Program of New Staff and Research Area Project of NPU(Grant No.13GH014602)
文摘The stability range of primary spacing of the tilted dendritic arrays in directional solidification has been studied by quantitative phase-field simulations. Results show that both the real growth direction and morphological shapes of dendritic arrays change with the primary spacing for different misorientation angles(θ0). It has been found that the lower limit of primary spacing is independent of θ0, but the upper limit of primary spacing is strongly influenced by that. The two kinds of tertiary branching instabilities result in different behaviors of the variation of the upper limit with misorientation angle for different pulling velocities.
基金supported by the National Natural Science Foundation of China (50632030 & 10804130)
文摘CaBi2Nb2O9 (CBNO) ceramics was prepared at 1050℃ using regular flake-like CBNO powders as the precursor, and synthe-sized by the molten salts synthesis method. The tropism degree and microstructure of the ceramics were analyzed, and the die-lectric, ferroelectric and piezoelectric properties were characterized. Compared with conventional methods, the properties of CBNO ceramics by the new preparation method were found to be better. As the sinter temperature decreases, the grain growth becomes regular with textured features. The polarization process becomes easy to be realized at room temperature. Moreover, the dielectric loss decreases and the piezoelectric constant increases significantly.
文摘Single-walled carbon nanotubes(SWNTs)are regarded as one of the most promising candidates as building blocks in the next generation electronics.The most advanced opportunities demand the ability to form perfectly aligned,horizontal arrays of SWNTs with a uniform structure.However,synthesizing them by conventional chemical vapor deposition(CVD)methods would result in poorly-aligned nanotubes with a variety of chiral species,