The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes...The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes equation. The fluid is considered as a neutral mixture of positive and negative ions. The effect of axial electric field is investigated to determine velocity profiles. Hydroelectric equation of the flow is deduced under dc and ac external electric field. Hence the effect of applied frequency (0-1 GHz) and amplitude (10-350 V/m) is illustrated. The ultimate goal is to approach the problem of EMF field interaction with blood flow. The applied pressure waveform is represented as such to simulate the systolic-diastolic behavior. Simulation was carried out using Maple software using blood plasma parameters; hence velocity profiles under various conditions are reported.展开更多
We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyze...We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyzed the relationship between the characteristic of FACs at the PSBL in magnetotail and the Kp index. The main results indicated the followings: 1) In the different geomagnetic activity levels, the relative occurrence of FACs in PSBL increased monotonically with geomagnetic activity. 2) The density of FACs in PSBL increased monotonically with Kp index. In the storm main phase, the density of FACs increased dramatically, the maximum FACs approximately equaled 19.05 nA m-2 while Kp equaled 5.3) The variation of FACs density in PSBL was consistent with the variation of the Kp index. However, when AE〈800 nT, FACs density in PSBL increased with increasing AE, and when AE〉800 nT, it decreased with increasing AE. Therefore, our results suggested that the FACs density in PSBL had a closer correlation with Kp index.展开更多
文摘The present work introduces a mathematical model for ionic fluid that flows under the effect of both pulsating pressure and axial electromagnetic field. The fluid is treated as a Newtonian fluid applying Navier-Stokes equation. The fluid is considered as a neutral mixture of positive and negative ions. The effect of axial electric field is investigated to determine velocity profiles. Hydroelectric equation of the flow is deduced under dc and ac external electric field. Hence the effect of applied frequency (0-1 GHz) and amplitude (10-350 V/m) is illustrated. The ultimate goal is to approach the problem of EMF field interaction with blood flow. The applied pressure waveform is represented as such to simulate the systolic-diastolic behavior. Simulation was carried out using Maple software using blood plasma parameters; hence velocity profiles under various conditions are reported.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40804031, 41074114, 40921063)the Specialized Research Fund for State Key Laboratories
文摘We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyzed the relationship between the characteristic of FACs at the PSBL in magnetotail and the Kp index. The main results indicated the followings: 1) In the different geomagnetic activity levels, the relative occurrence of FACs in PSBL increased monotonically with geomagnetic activity. 2) The density of FACs in PSBL increased monotonically with Kp index. In the storm main phase, the density of FACs increased dramatically, the maximum FACs approximately equaled 19.05 nA m-2 while Kp equaled 5.3) The variation of FACs density in PSBL was consistent with the variation of the Kp index. However, when AE〈800 nT, FACs density in PSBL increased with increasing AE, and when AE〉800 nT, it decreased with increasing AE. Therefore, our results suggested that the FACs density in PSBL had a closer correlation with Kp index.