在不需要紧性假设下,利用拟C-凸函数及回收锥的性质,建立了向量优化问题有效点集的稳定性,获得了一列目标函数和可行集均扰动情形下的向量优化问题与对应的向量优化问题有效点集的Painlevé-Kuratowski内收敛性结果。所得结果推广...在不需要紧性假设下,利用拟C-凸函数及回收锥的性质,建立了向量优化问题有效点集的稳定性,获得了一列目标函数和可行集均扰动情形下的向量优化问题与对应的向量优化问题有效点集的Painlevé-Kuratowski内收敛性结果。所得结果推广和改进了相关文献(Attouch H,RiahiH.Stability results for Ekeland’s-variational principle and cone extremal solution;Huang X X.Stabilityin vector-valued and set-valued optimization)中的相应结果,并给出例子说明了所得结果的正确性。展开更多
近期,夏远梅等(重庆师范大学(自然科学版),2015,32(1):12-15)利用Δ函数通过非线性标量化方法研究了向量优化问题的∈-真有效解并举例说明了主要结果.笔者指出:其定理1是Gao等(Journal of Industrial and Management Optimization,2011,...近期,夏远梅等(重庆师范大学(自然科学版),2015,32(1):12-15)利用Δ函数通过非线性标量化方法研究了向量优化问题的∈-真有效解并举例说明了主要结果.笔者指出:其定理1是Gao等(Journal of Industrial and Management Optimization,2011,7(2):483-496)建立的定理4.6(i)的特例;其定理2的证明存在不足.通过研究一般的(C,ε)-真有效解的Δ函数非线性标量化,给出了定理2的严谨证明.最后,在∈-真有效解存在的情况下举例说明了主要结果.展开更多
文摘在不需要紧性假设下,利用拟C-凸函数及回收锥的性质,建立了向量优化问题有效点集的稳定性,获得了一列目标函数和可行集均扰动情形下的向量优化问题与对应的向量优化问题有效点集的Painlevé-Kuratowski内收敛性结果。所得结果推广和改进了相关文献(Attouch H,RiahiH.Stability results for Ekeland’s-variational principle and cone extremal solution;Huang X X.Stabilityin vector-valued and set-valued optimization)中的相应结果,并给出例子说明了所得结果的正确性。
文摘近期,夏远梅等(重庆师范大学(自然科学版),2015,32(1):12-15)利用Δ函数通过非线性标量化方法研究了向量优化问题的∈-真有效解并举例说明了主要结果.笔者指出:其定理1是Gao等(Journal of Industrial and Management Optimization,2011,7(2):483-496)建立的定理4.6(i)的特例;其定理2的证明存在不足.通过研究一般的(C,ε)-真有效解的Δ函数非线性标量化,给出了定理2的严谨证明.最后,在∈-真有效解存在的情况下举例说明了主要结果.
基金Project 10261005 supported by National Natural Science Foundation of China and project 20001301 supported by Natural Science Foundation of Inner Mongolia.