Through loops vectorization in instruction sequence, the vector power provided by hardware can be fully utilized. This paper analyzes the RISC instructton set, and presents a single loop vectorization method that is b...Through loops vectorization in instruction sequence, the vector power provided by hardware can be fully utilized. This paper analyzes the RISC instructton set, and presents a single loop vectorization method that is based on assemble code, it can efficiently detect single loops in instruct sequence and vectorize them.展开更多
Aimed at the generation of high-quality test set in the shortest possible time, the test generation for combinational circuits (CC) based on the chaotic particle swarm optimization (CPSO) algorithm is presented ac...Aimed at the generation of high-quality test set in the shortest possible time, the test generation for combinational circuits (CC) based on the chaotic particle swarm optimization (CPSO) algorithm is presented according to the analysis of existent problems of CC test generation, and an appropriate CPSO algorithm model has been constructed. With the help of fault simulator, the test set of ISCAS' 85 benchmark CC is generated using the CPSO, and some techniques are introduced such as half-random generation, and simulation of undetected fauhs.with original test vector, and inverse test vector. Experimental results show that this algorithm can generate the same fault coverage and small-size test set in short time compared with other known similar methods, which proves that the proposed method is applicable and effective.展开更多
文摘Through loops vectorization in instruction sequence, the vector power provided by hardware can be fully utilized. This paper analyzes the RISC instructton set, and presents a single loop vectorization method that is based on assemble code, it can efficiently detect single loops in instruct sequence and vectorize them.
文摘Aimed at the generation of high-quality test set in the shortest possible time, the test generation for combinational circuits (CC) based on the chaotic particle swarm optimization (CPSO) algorithm is presented according to the analysis of existent problems of CC test generation, and an appropriate CPSO algorithm model has been constructed. With the help of fault simulator, the test set of ISCAS' 85 benchmark CC is generated using the CPSO, and some techniques are introduced such as half-random generation, and simulation of undetected fauhs.with original test vector, and inverse test vector. Experimental results show that this algorithm can generate the same fault coverage and small-size test set in short time compared with other known similar methods, which proves that the proposed method is applicable and effective.