期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多维观测的矩阵参数建模与加权最小二乘估计 被引量:1
1
作者 刘志平 朱丹彤 +1 位作者 余航 李思达 《大地测量与地球动力学》 CSCD 北大核心 2018年第8期862-867,共6页
针对常规向量参数法多维观测建模与平差效率低的问题,分析指出多维观测矩阵参数建模条件应满足不同观测维度的参数独立且个数相等特点(简称独立同构特征),进而利用该建模条件、Kronecker积运算性质和加权最小二乘原理提出矩阵参数建模... 针对常规向量参数法多维观测建模与平差效率低的问题,分析指出多维观测矩阵参数建模条件应满足不同观测维度的参数独立且个数相等特点(简称独立同构特征),进而利用该建模条件、Kronecker积运算性质和加权最小二乘原理提出矩阵参数建模与加权最小二乘估计方法。该方法顾及不同观测维互相关性,增大系数阵稠密度,降低法矩阵阶数,从而有效提高了建模与平差计算效率。空间直线和GPS站坐标时序模型计算结果均表明,向量参数法和矩阵参数法平差结果相同,但后者具有更高的存储与计算效率。 展开更多
关键词 多维观测模型 完全稠密矩阵 向量参数法 矩阵参数 加权最小二乘估计
下载PDF
Modified perturbation method for eigenvalues of structure with interval parameters 被引量:2
2
作者 WANG Chong QIU ZhiPing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2015年第1期75-83,共9页
In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue in... In overcoming the drawbacks of traditional interval perturbation method due to the unpredictable effect of ignoring higher order terms,a modified parameter perturbation method is presented to predict the eigenvalue intervals of the uncertain structures with interval parameters.In the proposed method,interval variables are used to quantitatively describe all the uncertain parameters.Different order perturbations in both eigenvalues and eigenvectors are fully considered.By retaining higher order terms,the original dynamic eigenvalue equations are transformed into interval linear equations based on the orthogonality and regularization conditions of eigenvectors.The eigenvalue ranges and corresponding eigenvectors can be approximately predicted by the parameter combinatorial approach.Compared with the Monte Carlo method,two numerical examples are given to demonstrate the accuracy and efficiency of the proposed algorithm to solve both the real eigenvalue problem and complex eigenvalue problem. 展开更多
关键词 interval perturbation method uncertain parameters higher order terms EIGENVALUE parameter combinatorial ap-proach
原文传递
A HYBRID PSO-SA OPTIMIZING APPROACH FOR SVM MODELS IN CLASSIFICATION
3
作者 HUIYAN JIANG LINGBO ZOU 《International Journal of Biomathematics》 2013年第5期189-206,共18页
Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. T... Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. This paper proposed an improved parameter optimization method based on traditional particle swarm optimization (PSO) algorithm by changing the fitness function in the traditional evolution process of SVMs. Then, this PSO method was combined with simulated annealing global searching algorithm to avoid local convergence that traditional PSO algorithms usually run into. And this method has achieved better results which reflected in the receiver-operating characteristic curves in medical images classification and has gained considerable identification accuracy in clinical disease detection. 展开更多
关键词 Support vector machine disease detection global optimization.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部