期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
适合大样本快速训练的最大夹角间隔核心集向量机 被引量:8
1
作者 胡文军 王士同 邓赵红 《电子学报》 EI CAS CSCD 北大核心 2011年第5期1178-1184,共7页
许多核化形式的分类方法如SVM,SVDD等都是对应一个二次规划(QP)问题,而核矩阵计算需要O(m2)空间复杂度,求解QP需要O(m3)时间复杂度,限制了这类方法对大样本数据的训练.本文基于一种新的分类间隔概念提出最大向量夹角间隔分类器MAMC,目... 许多核化形式的分类方法如SVM,SVDD等都是对应一个二次规划(QP)问题,而核矩阵计算需要O(m2)空间复杂度,求解QP需要O(m3)时间复杂度,限制了这类方法对大样本数据的训练.本文基于一种新的分类间隔概念提出最大向量夹角间隔分类器MAMC,目标是在样本空间找到最优向量c,测试样本通过c与训练样本之间的最大化向量夹角间隔ρ(称为Margin)实现分类.同时,文中证明了该方法的核化形式等价于核化的最小包络球MEB问题,并通过引入核心集向量机CVM将MAMC扩展为MAM-CVM,进而快速实现对大样本的训练和分类.人造和真实数据集实验表明了MAMC和MAM-CVM算法的有效性. 展开更多
关键词 向量夹角间隔 核化方法 核心集向量 最小包络球
下载PDF
中心向量夹角间隔正则化核向量机 被引量:1
2
作者 鲁淑霞 焦彩红 +1 位作者 周扬帆 佟乐 《信息与控制》 CSCD 北大核心 2015年第2期159-164,共6页
针对大数据集如何有效地进行训练的问题,基于最大向量夹角间隔分类器(maximum vector-angular margin classifier,MAMC),提出了求解最优向量d的不同方法来得到中心向量夹角间隔分类器(central vector-angular margin classifier,CAMC),... 针对大数据集如何有效地进行训练的问题,基于最大向量夹角间隔分类器(maximum vector-angular margin classifier,MAMC),提出了求解最优向量d的不同方法来得到中心向量夹角间隔分类器(central vector-angular margin classifier,CAMC),进而证明了CAMC等价于最小包围球问题(minimum enclosed ball,MEB).但是鉴于MEB对参数的敏感性,又提出了正则化核向量机(regularized core vector machine,RCVM),将CAMC与RCVM结合得到中心向量夹角间隔正则化核向量机(regularized core vector machine with central vector-angular margin,CAMCVM).基于基准数据集的实验表明,CAMC具有更好的分类性能且CAMCVM可以有效快速地训练大规模数据集. 展开更多
关键词 最大向量夹角间隔分类器 最小包围球 正则化 向量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部