期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
两类向量序列加速收敛方法比较 被引量:1
1
作者 秦子康 安恒斌 王新玉 《数值计算与计算机应用》 2021年第4期379-394,共16页
迭代方法是求解大规模线性和非线性问题的主要方法.由迭代方法产生的向量序列的收敛速度直接影响方法的应用效果.为了提高向量序列的收敛速度,可以采用向量序列的迭代加速算法.目前,针对向量序列加速收敛的算法主要包括两类:基于外插类... 迭代方法是求解大规模线性和非线性问题的主要方法.由迭代方法产生的向量序列的收敛速度直接影响方法的应用效果.为了提高向量序列的收敛速度,可以采用向量序列的迭代加速算法.目前,针对向量序列加速收敛的算法主要包括两类:基于外插类的方法和基于Anderson加速的方法.外插类加速方法通过对于原序列进行变形,以获得新的向量序列,使新的向量序列的收敛速度比原序列更快.典型的外插类方法有最小多项式外插(MPE)方法,修正的最小多项式外插(MMPE)方法,降秩外插(RRE)方法,拓扑ε算法(TEA),向量ε算法(VEA)等.Anderson加速方法结合不动点迭代格式,利用迭代过程中残差序列的信息构造新的迭代序列.本文选取RRE方法作为外插类加速方法的代表,与Anderson加速方法进行比较,并重点通过几类典型应用进行测试和分析.结果表明,Anderson加速方法和RRE方法均可提高向量序列的收敛速度,并且Anderson加速方法比RRE方法更为稳定和有效. 展开更多
关键词 向量序列:加速 不动点 RRE Anderson加速
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部