期刊文献+
共找到456篇文章
< 1 2 23 >
每页显示 20 50 100
基于时间序列的改进型永磁同步电机三矢量无模型预测电流控制策略
1
作者 肖强晖 张雨爽 +1 位作者 罗朝旭 程谆 《湖南电力》 2024年第5期29-36,共8页
针对永磁同步电机驱动系统传统的三矢量模型预测电流控制策略参数鲁棒性差的问题,提出一种基于时间序列的改进型三矢量无模型预测电流控制策略,以消除参数失配的影响,提高系统的鲁棒性。首先,建立时间序列数据驱动模型,将输入输出数据... 针对永磁同步电机驱动系统传统的三矢量模型预测电流控制策略参数鲁棒性差的问题,提出一种基于时间序列的改进型三矢量无模型预测电流控制策略,以消除参数失配的影响,提高系统的鲁棒性。首先,建立时间序列数据驱动模型,将输入输出数据拟合为离散传递函数,并结合递归最小二乘法在线估计模型待定系数,预测所需变量。此外,对矢量扇区进行重新分类,以优化三矢量组合的选择过程。引入矢量占空比直接计算方法,抑制电机参数入口对占空比计算环节的不确定性影响,进一步提高系统的鲁棒性。最后,仿真和实验结果表明,所提出的策略能有效提高模型参数的鲁棒性,dq轴电流纹波减小,电机参数变化引起的干扰得到有效抑制。 展开更多
关键词 永磁同步电机 模型预测控制 无模型 时间序列 三矢量
下载PDF
基于向量时间序列预测小波神经网络的控制参数在线整定方法的尝试研究
2
作者 刘经纬 王普 杨蕾 《计算机测量与控制》 北大核心 2014年第2期427-430,共4页
针对控制系统参数在线整定(自适应自优化)方法在工程应用中存在的稳定性和性能指标欠佳与进一步智能化问题,首先提出结合小波分析、BP、RBF神经网络优点和自适应机制构造了自适应小波神经网络方法 (AWNN),进而提出将AWNN结合经典控制方... 针对控制系统参数在线整定(自适应自优化)方法在工程应用中存在的稳定性和性能指标欠佳与进一步智能化问题,首先提出结合小波分析、BP、RBF神经网络优点和自适应机制构造了自适应小波神经网络方法 (AWNN),进而提出将AWNN结合经典控制方法构成的AWNN-PID方法,最终提出了采用自回归移动平均向量时间序列算法预测输出替代控制系统实时输出,从而构成基于向量时间序列预测自适应小波神经网络的控制参数在线整定方法 (VARMA-WNN-PID);进而选择工程应用中最为常见的多阶延迟被控对象,对BPNN-PID、RBF-PID与该研究提出的AWNN-PID、VARMA-WNN-PID等4种方法进行计算机仿真对比实验(结合针对神经网络学习效率、惯性系数和预测算法阶数、步长的对比试验),验证了新方法具有可行性、工程应用可靠性、更好的快速性、更低的静差和更灵活的控制参数调整能力。 展开更多
关键词 在线整定 小波神经网络 向量时间序列 指标控制 预测控制
下载PDF
基于集成光子储备池的时间序列任务预测 (特邀)
3
作者 裴丽 丁保钦 +4 位作者 白冰 白博文 隋娟 王建帅 宁提纲 《红外与激光工程》 EI CSCD 北大核心 2024年第10期30-39,共10页
光子储备池因其反馈连接的拓扑结构,在时间序列任务中展现出巨大潜力,主要形式包括延时型、波导型、空间光型和空腔型储备池。其中,波导型集成光子储备池具有并行输入和高集成度的特点,在时间序列二进制任务中表现突出。然而,针对更复... 光子储备池因其反馈连接的拓扑结构,在时间序列任务中展现出巨大潜力,主要形式包括延时型、波导型、空间光型和空腔型储备池。其中,波导型集成光子储备池具有并行输入和高集成度的特点,在时间序列二进制任务中表现突出。然而,针对更复杂的模拟数值预测任务,传统方法下的单个集成光子储备池因物理节点数量有限,导致计算性能不足。为解决这一问题,提出了一种32节点梅花形光子储备池芯片,外围节点作为输入输出节点,各输入节点通过强度调制引入非线性效应,接收不同的调制信号,各输出节点基于历史数据,采用向量自回归算法进行训练,从而实现更高效且精确的时间序列预测任务。研究结果表明:通过优化输入策略、芯片设计和训练算法,32节点集成光子储备池相较于传统延时型光子储备池,在预测任务中的RMSE和NMSE指标分别提升了两个和一个数量级,使波导型集成光子储备池在时间序列预测任务中成为有力竞争方法。 展开更多
关键词 光子储备池 时间序列预测 集成光学 向量自回归
下载PDF
基于支持向量回归的时间序列预测 被引量:65
4
作者 杨金芳 翟永杰 +1 位作者 王东风 徐大平 《中国电机工程学报》 EI CSCD 北大核心 2005年第17期110-114,共5页
该文简要介绍了时间序列预测的研究状况以及支持向量回归的基本原理,将支持向量回归用于对Box-Jenkins煤气炉时间序列的预测,并同其他前馈网络——BP神经网络、自适应特征空间扩张神经网络进行比较,仿真结果表明,BP神经网络和自适应特... 该文简要介绍了时间序列预测的研究状况以及支持向量回归的基本原理,将支持向量回归用于对Box-Jenkins煤气炉时间序列的预测,并同其他前馈网络——BP神经网络、自适应特征空间扩张神经网络进行比较,仿真结果表明,BP神经网络和自适应特征空间扩张神经网络在预测性能上比较接近,而支持向量回归在预测性能方面明显优于这两种方法,为进行模型辨识与建模研究奠定基础。文章最后分析了支持向量回归优于BP神经网络和自适应特征空间扩张神经网络的机理。 展开更多
关键词 热能动力工程 支持向量 时间序列 预测 回归
下载PDF
边坡位移非线性时间序列采用支持向量机算法的智能建模与预测研究 被引量:65
5
作者 刘开云 乔春生 滕文彦 《岩土工程学报》 EI CAS CSCD 北大核心 2004年第1期57-61,共5页
介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法———支持向量机算法,运用Matlab语言编写了程序,采用不同的核函数对具体的边坡工程实例作了计算,并将人工神经元网络计算结果与之对比,可见无论是在学习或预测精度方面... 介绍了人工智能领域最新的基于结构风险最小化原理的数据挖掘算法———支持向量机算法,运用Matlab语言编写了程序,采用不同的核函数对具体的边坡工程实例作了计算,并将人工神经元网络计算结果与之对比,可见无论是在学习或预测精度方面,支持向量机算法较基于经验风险最小化原理的人工神经元网络算法都有很大的优越性,可以运用于实际工程。 展开更多
关键词 边坡 位移 非线性 时间序列 支持向量 回归算法 位移预测
下载PDF
基于多维时间序列局部支持向量回归的微网光伏发电预测 被引量:67
6
作者 黄磊 舒杰 +1 位作者 姜桂秀 张继元 《电力系统自动化》 EI CSCD 北大核心 2014年第5期19-24,共6页
目前光伏发电预测普遍采用采样间隔较大的单一时间尺度功率序列建模,模型简单但对功率时序特征的模拟精度不高。文中提出了一种基于小采样间隔光伏功率数据的多维时间序列局部预测方法。通过构造不同时间尺度的光伏功率均值序列,形成以... 目前光伏发电预测普遍采用采样间隔较大的单一时间尺度功率序列建模,模型简单但对功率时序特征的模拟精度不高。文中提出了一种基于小采样间隔光伏功率数据的多维时间序列局部预测方法。通过构造不同时间尺度的光伏功率均值序列,形成以小时平均光伏功率序列为主要研究序列的多维时间序列;基于相关性分析、C-C方法和嵌入维最小预测误差法确定多维时间序列相空间重构的时间延迟和嵌入维;采用支持向量回归方法建立提前1h的光伏功率局部预测模型。以国内某微网的光伏功率预测为例进行仿真实验,计算结果表明,多维时间序列局部预测模型优于基于单一时间尺度功率序列的局部预测模型,更具应用价值。 展开更多
关键词 光伏功率预测 微网(微电网) 多维时间序列相空间重构 支持向量回归 局部预测
下载PDF
基于支持向量机的复杂时间序列预测研究 被引量:32
7
作者 曲文龙 樊广佺 杨炳儒 《计算机工程》 EI CAS CSCD 北大核心 2005年第23期1-3,共3页
介绍了相空间重构和基于支持向量机的时间序列预测建模技术,提出了复杂时间序列的多尺度分解方法,对支持向量机回归与预测的各项参数设置进行了试验分析。对股票数据进行建模和预测,结果表明支持向量机对复杂时间序列具有较好的预测效果。
关键词 时间序列预测 支持向量 多尺度 数据挖掘
下载PDF
基于支持向量机的时间序列预测模型分析与应用 被引量:45
8
作者 尉询楷 李应红 +1 位作者 张朴 路建明 《系统工程与电子技术》 EI CSCD 北大核心 2005年第3期529-532,共4页
阐述了支持向量机在时间序列预测中应用的理论基础,给出了时间序列预测分析的基本框架。将支持向量机预测模型应用于某型航空发动机的滑油金属含量监测中,并与递归神经网络预测器进行了比较。得出支持向量机由于采用了新型的结构风险最... 阐述了支持向量机在时间序列预测中应用的理论基础,给出了时间序列预测分析的基本框架。将支持向量机预测模型应用于某型航空发动机的滑油金属含量监测中,并与递归神经网络预测器进行了比较。得出支持向量机由于采用了新型的结构风险最小化准则表现出优秀的推广能力,可预测区间较长且具有较高的准确度,而递归神经网络模型在中、短期预测中与支持向量机相差不大,在较长区间预测中效果较差的结论。 展开更多
关键词 支持向量回归 递归神经网络 时间序列预测 建模与应用
下载PDF
基于时间序列和支持向量机的变压器故障预测 被引量:39
9
作者 黄新波 蒋卫涛 +1 位作者 朱永灿 田毅 《高电压技术》 EI CAS CSCD 北大核心 2020年第7期2530-2538,共9页
电力变压器故障预测可实现对变压器故障的早期预警,对保证电力系统的正常运行具有重要意义。该文提出了一种基于时间序列和支持向量机(SVM)的变压器故障预测模型。该模型以时间序列分析中的自回归积分滑动平均模型(ARIMA)为基础,采用遗... 电力变压器故障预测可实现对变压器故障的早期预警,对保证电力系统的正常运行具有重要意义。该文提出了一种基于时间序列和支持向量机(SVM)的变压器故障预测模型。该模型以时间序列分析中的自回归积分滑动平均模型(ARIMA)为基础,采用遗传算法(GA)对ARIMA模型参数p和q进行定阶,并利用定阶后的时间序列模型对变压器油中溶解气体进行预测,然后利用基于网格搜索算法(GS)优化后的SVM模型对预测出的油中溶解气体进行诊断。运行结果表明,该模型的预测准确率可达89.66%,而利用GM–SVM、ARIMA–SVM和GA–ARIMA–ANN得到的预测准确率分别为58.62%、79.31%、75.86%。因此,所提出模型有更高的预测准确率。 展开更多
关键词 变压器 故障预测 时间序列 支持向量 ARIMA 遗传算法 油中溶解气体
下载PDF
GA优化支持向量机用于混沌时间序列预测 被引量:21
10
作者 刘隽 周涛 周佩玲 《中国科学技术大学学报》 CAS CSCD 北大核心 2005年第2期258-263,共6页
介绍了利用支持向量机与重构相空间理论预测混沌时间序列的方法,并以股价时间序列为样本,比较了几种常用核函数的预测能力,实验表明高斯核的预测能力明显好于其它核.使用遗传算法优化了高斯核支持向量机的参数,优化后其预测能力较经验... 介绍了利用支持向量机与重构相空间理论预测混沌时间序列的方法,并以股价时间序列为样本,比较了几种常用核函数的预测能力,实验表明高斯核的预测能力明显好于其它核.使用遗传算法优化了高斯核支持向量机的参数,优化后其预测能力较经验定参方法有明显提高,且好于传统的预测方法. 展开更多
关键词 预测 支持向量 混沌时间序列 遗传算法
下载PDF
基于时间序列与人工蜂群支持向量机的滑坡位移预测研究 被引量:37
11
作者 杨帆 许强 +1 位作者 范宣梅 叶微 《工程地质学报》 CSCD 北大核心 2019年第4期880-889,共10页
总结以往滑坡预测方法存在的诸多不足,针对滑坡监测位移-时间曲线特点,本文提出了一种基于时间序列的人工蜂群算法(ABC)与支持向量回归机(SVR)相结合的滑坡位移预测方法。以三峡库区白水河滑坡为例,通过对滑坡位移、降雨、库水位等因素... 总结以往滑坡预测方法存在的诸多不足,针对滑坡监测位移-时间曲线特点,本文提出了一种基于时间序列的人工蜂群算法(ABC)与支持向量回归机(SVR)相结合的滑坡位移预测方法。以三峡库区白水河滑坡为例,通过对滑坡位移、降雨、库水位等因素的分析,研究影响滑坡位移变化的因素。用时间序列加法模型和移动平均法将滑坡位移分解为趋势项和周期项。以多项式最小二乘法拟合滑坡位移趋势项,用人工蜂群支持向量机模型对滑坡位移周期项进行训练和预测。通过灰色系统关联分析法计算多项因子与滑坡位移周期项之间的关联性。最终的滑坡总位移预测值为周期项预测值与趋势项预测值之和。与BP神经网络、PSO-SVR模型方法相比,该方法在滑坡位移预测中有更高的精度,在防灾减灾工作中有较好的推广应用前景。 展开更多
关键词 滑坡 位移预测 时间序列 人工蜂群算法 支持向量回归机
下载PDF
区间时间序列向量自回归模型在短期电力负荷预测中的应用 被引量:90
12
作者 万昆 柳瑞禹 《电网技术》 EI CSCD 北大核心 2012年第11期77-81,共5页
电力负荷数据通常随着时间的不同而呈现一定的波动性。针对电力负荷随着时间波动呈现出一个范围波动的特点,采用区间时间序列估计与向量自回归相结合的方法对短期电力负荷进行预测,预测结果拟合良好,提高了电网公司对电力负荷的预测精确... 电力负荷数据通常随着时间的不同而呈现一定的波动性。针对电力负荷随着时间波动呈现出一个范围波动的特点,采用区间时间序列估计与向量自回归相结合的方法对短期电力负荷进行预测,预测结果拟合良好,提高了电网公司对电力负荷的预测精确度,为电网公司制定负荷预报曲线提供精准数据信息,为电网公司编制电力负荷计划提供理论支持和有效的方法。 展开更多
关键词 区间时间序列 向量自回归 电力负荷 预测
下载PDF
支持向量机时间序列预测模型的参数影响分析与自适应优化 被引量:19
13
作者 杨虞微 左洪福 陈果 《航空动力学报》 EI CAS CSCD 北大核心 2006年第4期767-772,共6页
建立在统计学习理论和结构风险最小原则上的支持向量机在理论上保证了模型的最大泛化能力,因此与建立在经验风险最小原则上的神经网络模型相比,理论上更为完善。本文运用支持向量机建立时间序列预测模型,研究影响模型预测精度的相关参数... 建立在统计学习理论和结构风险最小原则上的支持向量机在理论上保证了模型的最大泛化能力,因此与建立在经验风险最小原则上的神经网络模型相比,理论上更为完善。本文运用支持向量机建立时间序列预测模型,研究影响模型预测精度的相关参数,在分析参数对时间序列预测精度的影响基础上,提出用遗传算法建立支持向量机预测模型的参数自适应优化算法。最后,用太阳黑子数据和航空发动机油样光谱数据进行了预测分析。算例表明了本文算法的正确性。 展开更多
关键词 航空 航天推进系统 支持向量 时间序列分析 预测 遗传算法 优化
下载PDF
基于支持向量回归的凝汽器清洁系数时间序列预测 被引量:22
14
作者 王雷 徐治皋 司风琪 《中国电机工程学报》 EI CSCD 北大核心 2007年第14期62-66,共5页
分析了凝汽器水侧污垢形成的机理,得到凝汽器清洁系数随时间变化的基本规律。提出采用支持向量回归时间序列预测法来预测凝汽器清洁系数。简要介绍了支持向量回归的理论基础,建立了凝汽器清洁系数时间序列预测模型,利用某300MW机组的数... 分析了凝汽器水侧污垢形成的机理,得到凝汽器清洁系数随时间变化的基本规律。提出采用支持向量回归时间序列预测法来预测凝汽器清洁系数。简要介绍了支持向量回归的理论基础,建立了凝汽器清洁系数时间序列预测模型,利用某300MW机组的数据,对模型进行了校验,探讨了参数的选择。并同径向基函数神经网络预测模型进行比较,结果表明,支持向量回归模型在预测性能方面明显优于RBF神经网络方法,并且模型具有较好的预测精度和泛化能力,为凝汽器真空降低故障的诊断,奠定了一定的基础。 展开更多
关键词 热能动力工程 汽轮机 凝汽器 清洁系数 支持向量回归 时间序列预测
下载PDF
静止坐标系下基于最优时间序列的电压型PWM整流器电流预测控制 被引量:31
15
作者 宋战锋 夏长亮 谷鑫 《电工技术学报》 EI CSCD 北大核心 2013年第3期234-240,共7页
有限状态预测控制能够实现静止坐标系下电压型PWM整流器的电流控制,但开关频率及稳态控制精度方面的缺陷限制了其进一步发展。针对这一问题,提出了基于最优时间序列的电压型PWM整流器电流控制策略。根据电网电压相位信息筛选非零矢量,... 有限状态预测控制能够实现静止坐标系下电压型PWM整流器的电流控制,但开关频率及稳态控制精度方面的缺陷限制了其进一步发展。针对这一问题,提出了基于最优时间序列的电压型PWM整流器电流控制策略。根据电网电压相位信息筛选非零矢量,基于电流变化特性预测模型得出不同矢量作用下的电流变化特性,结合电流给定值构建基于、轴电流误差的价值函数,以单个采样周期内电流误差最小为约束条件确定非零矢量作用时间。实验结果表明,本文提出的基于最优时间序列的预测控制策略能够有效弥补有限状态预测控制在开关频率及稳态控制精度方面的缺陷,在保证稳态控制精度的同时,实现静止坐标系下电流的准确、快速调节。 展开更多
关键词 静止坐标系 最优时间序列 预测控制 定频 价值函数
下载PDF
时间序列分析与支持向量机的滑坡位移预测 被引量:36
16
作者 彭令 牛瑞卿 吴婷 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第9期1672-1679,共8页
滑坡在变形演化过程中,遭受季节性外界影响因素的作用,变形位移时间曲线呈现出阶跃型特征.采用时间序列分析方法,将位移分解为趋势项和季节项.趋势项位移由坡体自身地质条件控制,利用多项式函数进行预测;季节项位移受降雨、库水位和地... 滑坡在变形演化过程中,遭受季节性外界影响因素的作用,变形位移时间曲线呈现出阶跃型特征.采用时间序列分析方法,将位移分解为趋势项和季节项.趋势项位移由坡体自身地质条件控制,利用多项式函数进行预测;季节项位移受降雨、库水位和地下水位等因素的季节性作用而变化.选取当月降雨量、累计前2个月降雨量、当月库水位高程、月库水位变化速率和当月地下水位高程作为影响因子,利用进化支持向量机耦合模型进行预测;通过时间序列加法模型得到滑坡总位移预测值.以三峡库区白家包滑坡为例,通过计算得到预测结果与实际监测值基本吻合,其中最大均方根误差为18.8,而最小相关系数为0.98.研究表明:基于时间序列分析与进化支持向量机的滑坡位移预测模型,有效反映了阶跃型滑坡位移变化规律与季节性影响因素之间的响应关系,是一种行之有效的滑坡位移预测方法. 展开更多
关键词 滑坡 位移预测 时间序列 遗传算法 支持向量
下载PDF
最小二乘回归支持向量机对非线性时间序列预测的试验分析 被引量:16
17
作者 纪玲玲 林振山 +1 位作者 王昌雨 张志华 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第1期92-97,共6页
利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温... 利用最小二乘回归支持向量机LS-SVMR(least square support vectors machines for regression)对2个不同长度的时间序列资料,国家气候中心1982年1月~2005年12月Nino3区逐月海温距平指数(短序列),及1950年1月~2006年12月Nino3区逐月海温距平指数(长序列)资料进行了预测试验,以验证支持向量机对气候变化中非线性时间序列的预测效果。结果表明:通过训练建立的最小二乘回归支持向量机模型,较好地反映了Nino3区海温距平指数的变化规律,36个月的预报效果较好,具有一定的可信度。资料的长度越长,预测结果与实测值的变化趋势越接近,但资料长度对均方根预报误差不敏感。 展开更多
关键词 最小二乘回归支持向量 海温距平指数 时间序列预测
下载PDF
Oracle中使用支持向量机的时间序列预测方法 被引量:5
18
作者 吴湘宁 胡炫 +2 位作者 胡光道 胡成玉 李桂玲 《计算机工程与应用》 CSCD 2013年第14期121-125,共5页
利用Oracle数据库中的数据挖掘选件(Oracle Data Mining,ODM),并使用存储在Oracle数据库中的时间序列数据,可构建预测时间序列未来值的支持向量机(Support Vector Machines,SVM)模型。建模时,需去除时间序列中的趋势,将目标属性标准化,... 利用Oracle数据库中的数据挖掘选件(Oracle Data Mining,ODM),并使用存储在Oracle数据库中的时间序列数据,可构建预测时间序列未来值的支持向量机(Support Vector Machines,SVM)模型。建模时,需去除时间序列中的趋势,将目标属性标准化,确定包含延迟变量窗口的尺寸,利用机器学习方法,由时间序列历史数据得出SVM预测模型。与传统时间序列预测模型相比,SVM预测模型能够揭示时间序列的非线性、非平稳性和随机性,从而得到较高的预测精度。 展开更多
关键词 ORACLE 时间序列 支持向量 预测模型
下载PDF
状态时间序列预测的贝叶斯最小二乘支持向量机方法 被引量:12
19
作者 张弦 王宏力 +1 位作者 张金生 孙渊 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第10期42-46,共5页
为实现对电子系统状态时间序列的有效预测,提出一种基于贝叶斯证据框架的最小二乘支持向量机在线预测方法.该方法以逐次增加最新状态数据并剔除最旧状态数据的方式更新最小二乘支持向量机预测模型,利用分块矩阵求逆运算简化了新旧状态... 为实现对电子系统状态时间序列的有效预测,提出一种基于贝叶斯证据框架的最小二乘支持向量机在线预测方法.该方法以逐次增加最新状态数据并剔除最旧状态数据的方式更新最小二乘支持向量机预测模型,利用分块矩阵求逆运算简化了新旧状态数据交替增减所带来的预测模型重训问题,通过贝叶斯证据框架实现预测模型超参数的在线动态优化.应用于雷达发射机中高压电源与多注速调管的状态时间序列预测实例表明,该方法的预测精度与计算效率比自适应灰色模型方法分别高9.52%与73.26%,具有预测精度高、预测稳定性高与计算效率高的优点,适用于电子系统在线状态时间序列预测. 展开更多
关键词 最小二乘支持向量 贝叶斯证据框架 电子系统 雷达发射机 状态时间序列预测
下载PDF
无核相关向量机在时间序列预测中的应用 被引量:9
20
作者 韩敏 许美玲 穆大芸 《计算机学报》 EI CSCD 北大核心 2014年第12期2427-2432,共6页
针对采用核函数方法预测多元混沌时间序列时存在的高计算复杂度问题,该文在相关向量机的基础上,提出了一种不受核函数约束的无核相关向量机学习模型.利用储备池代替核函数,构建高维特征空间,将原始时间序列预测问题转化成与储备池参数... 针对采用核函数方法预测多元混沌时间序列时存在的高计算复杂度问题,该文在相关向量机的基础上,提出了一种不受核函数约束的无核相关向量机学习模型.利用储备池代替核函数,构建高维特征空间,将原始时间序列预测问题转化成与储备池参数相关的回归问题.在稀疏贝叶斯学习的框架下,给模型参数施加一个条件概率分布的约束,以得到稀疏的解空间,进而降低模型的复杂度,提高计算速度和预测精度.基于Lorenz混沌时间序列及太阳黑子-黄河径流量序列的仿真结果验证了所提模型的有效性. 展开更多
关键词 核方法 储备池 相关向量 时间序列预测 机器学习
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部