期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于密度特征的维吾尔文离线签名识别 被引量:9
1
作者 库尔班.吾布力 热依买.阿不力克木 +2 位作者 努尔毕亚.亚地卡尔 阿力木江.艾沙 吐尔根.依布拉音 《计算机工程与设计》 北大核心 2016年第8期2200-2205,共6页
对维吾尔文签名图像进行预处理(含灰度化、平滑、二值化、归一化、细化等)的基础上,提出基于密度特征的维吾尔文离线签名识别方法,结合签名样本的空间地位信息,对离线签名进行有效处理和识别。从维吾尔文签名样本库中选取75个签名者的(2... 对维吾尔文签名图像进行预处理(含灰度化、平滑、二值化、归一化、细化等)的基础上,提出基于密度特征的维吾尔文离线签名识别方法,结合签名样本的空间地位信息,对离线签名进行有效处理和识别。从维吾尔文签名样本库中选取75个签名者的(20个样本/人)1500个签名样本进行分类实验,得到最高为96%的识别率,实验结果表明,密度特征是维吾尔文手写签名的一种有效特征,能较全面地描述与捕捉维吾尔文手写签名的书写特点。 展开更多
关键词 维吾尔文 签名识别 密度特征 特征距离 向量间距离
下载PDF
Pattern recognition and prediction study of rock burst based on neural network 被引量:2
2
作者 LI Hong 《Journal of Coal Science & Engineering(China)》 2010年第4期347-351,共5页
Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though th... Many monitoring measures were used in the production field for predicting rockburst.However, predicting rock burst according to complicated observation data is alwaysa pressing problem in this research field.Though the critical value method gets extensiveapplication in practice, it stresses only on the superficial change of data and overlooks alot of features of rock burst and useful information that is concealed and hidden in the observationtime series.Pattern recognition extracts the feature value of time domain, frequencydomain and wavelet domain in observation time series to form Multi-Feature vectors,using Euclidean distance measure as the separable criterion between the same typeand different type to compress and transform feature vectors.It applies neural network asa tool to recognize the danger of rock burst, and uses feature vectors being compressedto carry out training and studying.It is proved by test samples that predicting precisionshould be prior to such traditional predicting methods as pattern recognition and critical indicatormethod. 展开更多
关键词 rock burst multi-feature pattern recognition neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部