本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的0.125(°)×0.125(°)的ERA-Interim再分析资料、美国国家航空航天局(National Aeronautics and Space Administration,NA...本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的0.125(°)×0.125(°)的ERA-Interim再分析资料、美国国家航空航天局(National Aeronautics and Space Administration,NASA)提供的MODIS(Moderate Resolution Imaging Spectroradiometer)可见光云图、气象卫星合作研究所(Cooperative Institute for Meteorological Satellite Studies,CIMSS)提供的GOES-EAST红外卫星云图等资料以及WRF(Weather Research and Forecasting)数值模式的模拟结果,对2003年3月北大西洋上一个爆发性气旋B“吞并”另一个气旋A后快速发展机制进行了分析。气旋A和B均生成于美国东部,气旋A于2003年3月5日06 UTC生成,气旋B于6日00 UTC生成,且比气旋A向东北方向移动得更快,7日18 UTC达到最大加深率3.27 hPa·h^(-1)。在北大西洋中部地区,从8日00 UTC开始,气旋B吞并气旋A后形成气旋C,8日12 UTC气旋C中心气压达到最低值938.3 hPa。高空急流、低空水汽输送和潜热释放为气旋A和气旋B的快速发展提供了有利的环流背景场。气旋B吞并气旋A的过程经历三个阶段:前期阶段、吞并阶段、完成阶段。利用WRF模式模拟结果的分析表明,气旋A和B之间建立水汽输运通道,水汽从气旋A向气旋B输送。气旋B吞并气旋A后形成气旋C快速发展的主要原因是暖平流的作用。展开更多
文摘本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的0.125(°)×0.125(°)的ERA-Interim再分析资料、美国国家航空航天局(National Aeronautics and Space Administration,NASA)提供的MODIS(Moderate Resolution Imaging Spectroradiometer)可见光云图、气象卫星合作研究所(Cooperative Institute for Meteorological Satellite Studies,CIMSS)提供的GOES-EAST红外卫星云图等资料以及WRF(Weather Research and Forecasting)数值模式的模拟结果,对2003年3月北大西洋上一个爆发性气旋B“吞并”另一个气旋A后快速发展机制进行了分析。气旋A和B均生成于美国东部,气旋A于2003年3月5日06 UTC生成,气旋B于6日00 UTC生成,且比气旋A向东北方向移动得更快,7日18 UTC达到最大加深率3.27 hPa·h^(-1)。在北大西洋中部地区,从8日00 UTC开始,气旋B吞并气旋A后形成气旋C,8日12 UTC气旋C中心气压达到最低值938.3 hPa。高空急流、低空水汽输送和潜热释放为气旋A和气旋B的快速发展提供了有利的环流背景场。气旋B吞并气旋A的过程经历三个阶段:前期阶段、吞并阶段、完成阶段。利用WRF模式模拟结果的分析表明,气旋A和B之间建立水汽输运通道,水汽从气旋A向气旋B输送。气旋B吞并气旋A后形成气旋C快速发展的主要原因是暖平流的作用。