Under a suitable condition of crystallization, dark brown short rhombohedron crystals could be obtained from nitrogenase MnFe protein purified from a mutant UW3 of Azotobacter vinelandii Lipmann grown in Mn-containing...Under a suitable condition of crystallization, dark brown short rhombohedron crystals could be obtained from nitrogenase MnFe protein purified from a mutant UW3 of Azotobacter vinelandii Lipmann grown in Mn-containing but Mo- and NH3-free medium. The possibility of crystallization, and number, size and quality of crystals were obviously dependent on concentrations of NaCl, MgCl2, PEG 8000,Tris and Hepes buffer and on methods for crystallization. PEG concentration affected on the shape of the crystals. The optimal, concentrations of the chemicals for crystallization of MnFe protein were slightly different from those for crystallization of Delta nifZ MoFe protein from a nifZ deleted strain of Azotobacter vinelandii. SDS-PAGE showed that the protein from the dissolved crystals was almost the same as MnFe protein before crystallization, indicating that the crystal was formed from MnFe protein.展开更多
文摘Under a suitable condition of crystallization, dark brown short rhombohedron crystals could be obtained from nitrogenase MnFe protein purified from a mutant UW3 of Azotobacter vinelandii Lipmann grown in Mn-containing but Mo- and NH3-free medium. The possibility of crystallization, and number, size and quality of crystals were obviously dependent on concentrations of NaCl, MgCl2, PEG 8000,Tris and Hepes buffer and on methods for crystallization. PEG concentration affected on the shape of the crystals. The optimal, concentrations of the chemicals for crystallization of MnFe protein were slightly different from those for crystallization of Delta nifZ MoFe protein from a nifZ deleted strain of Azotobacter vinelandii. SDS-PAGE showed that the protein from the dissolved crystals was almost the same as MnFe protein before crystallization, indicating that the crystal was formed from MnFe protein.