期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
硫酸除氯技术在含氯土壤有机质测定中的应用
1
作者 刘军根 李勋 郭宁 《化工管理》 2017年第34期62-62,共1页
土壤中的有机质含量是鉴别土壤肥力高低的重要指标之一,但由于土壤中的氯会影响有机质含量的测定结果,进而造成人们难以对土壤的肥力进行准确判断,而通过在含氯土壤中提前加入适量的H2SO4,能够有效消除土壤中氯离子对有机质测定结果的... 土壤中的有机质含量是鉴别土壤肥力高低的重要指标之一,但由于土壤中的氯会影响有机质含量的测定结果,进而造成人们难以对土壤的肥力进行准确判断,而通过在含氯土壤中提前加入适量的H2SO4,能够有效消除土壤中氯离子对有机质测定结果的部分干扰,有助于提高含氯土壤有机质的测定结果的准确性。为此,本文便对硫酸除氯法进行阐述,分析了含氯土壤有机质测定中氯的去除方法,并以此探讨硫酸除氯技术在含氯土壤有机质测定中的相关应用策略。 展开更多
关键词 含氯土壤 硫酸除技术 有机质 土壤测定 应用策略
下载PDF
浙江省主要土壤含氯背景值和施用含氯化肥对土壤CI~-积累的影响 被引量:6
2
作者 朱元洪 陈仁飞 《浙江农业学报》 CSCD 1994年第4期234-237,共4页
本研究通过对浙江省除滨海盐土外的主要土壤的含氯背景值测定和不同土壤、不同作物的田间施用含氯化肥试验,结果表明,浅海沉积母质的淡涂泥和淡涂田含氯背景值高,但变化范围较大,为718.9一60.4mg/kg;其它母质的土壤... 本研究通过对浙江省除滨海盐土外的主要土壤的含氯背景值测定和不同土壤、不同作物的田间施用含氯化肥试验,结果表明,浅海沉积母质的淡涂泥和淡涂田含氯背景值高,但变化范围较大,为718.9一60.4mg/kg;其它母质的土壤含氯背景值较低,多在100mg/kg以下。施用合氯化肥会引起土壤C1-积累,但残留牢固土质而异,变幅为0~30%,质地较轻、渗排水良好的土壤,C1-残留率较低,反之则较高,但一般在10%以下。非灌溉的果园土壤C1-留率不一定高于水田。连续施用含氯化肥2~3年,土壤C1-浓度未超过作物的C1-临界浓度。 展开更多
关键词 土壤背景值 化肥 土壤C1 ̄积累
下载PDF
影响福建烤烟品质的主要土壤障碍因素
3
作者 黄燕翔 刘淑欣 +2 位作者 熊德中 陈淑婷 邱志丹 《福建农业科技》 1995年第S1期26-27,共2页
适宜的土壤条件是生产优质烤烟的先决条件.本文就土壤反应、土壤主要养分以及土壤含氯量等对烤烟品质的影响进行研究,为调节土壤环境条件,科学施肥。
关键词 烤烟品质 土壤障碍 土壤有机质 土壤 土壤酸碱度 福建农业大学 烟区土壤 优质烤烟 离子 土壤环境条件
下载PDF
东北地区土壤氯素分布与含氯化肥连续施用肥效变化 被引量:4
4
作者 金安世 张秀英 王秀芳 《土壤通报》 CAS CSCD 北大核心 1994年第1期40-42,共3页
土壤测定和田间试验结果表明,我国东北地区各类非盐渍化农田土壤中原始含氯量在22~55gg-1,土壤剖面通体含氯量变化不大,总体含氯水平较低,适于施用含氯化肥的土壤可能容量远未达饱和程度。连续3年定位试验常量施肥条件下... 土壤测定和田间试验结果表明,我国东北地区各类非盐渍化农田土壤中原始含氯量在22~55gg-1,土壤剖面通体含氯量变化不大,总体含氯水平较低,适于施用含氯化肥的土壤可能容量远未达饱和程度。连续3年定位试验常量施肥条件下,氯化铁与尿素等氮等效,连续施用氯化铵的肥效仍很稳定。施用氯化铵加氯化钾,亦未因施氧量的增加而降低含氯化肥肥效。 展开更多
关键词 土壤 化肥 田间试验
全文增补中
Remediation of Trichloroethylene and Monochlorobenzene-Contaminated Aquifers Using the ORC-GAC-Fe^0-CaCO_3 System: Volatilization, Precipitation, and Porosity Losses 被引量:1
5
作者 LIN Qi V. PLAGENTZ +1 位作者 D. SCHAFER A. DAHMKE 《Pedosphere》 SCIE CAS CSCD 2007年第1期109-116,共8页
The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlo... The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlorobenzene (MCB) and trichloroethylene (TCE)-contaminated aquifers using the ORC-GAC-Fe^0-CaCO3 system. The system consisted of four columns (112 cm long and 10 cm in diameter) with oxygen-releasing compound (ORC), granular activated carbon (GAC), zero-valent iron (Fe^0), and calcite used sequentially as the reactive media. The concentrations of MCB in the GAC column effluent and TCE in the Fe^0 column effluent were below the detection limit. However, the concentrations of MCB and TCE in the final calcite column exceeded the maximum contaminant level (MCL) under the Safe Drinking Water Act of the US Environmental Protection Agency (US EPA) that protects human health and environment. These results suggested that partitioning of MCB and TCE into the gas phase could occur, and also that transportation of volatile organic pollutants in the gas phase was important. Three main precipitates formed in the ORC-GAC-Fe^0-CaCO3 system: CaCO3 in the ORC column along with Fe(OH)2 and FeCO3 in the Fe^0 column. The total porosity losses caused by mineral precipitation corresponded to about 0.24% porosity in the ORC column, and 1% in the Fe^0 column. The most important cause of porosity losses was anaerobic corrosion of iron. The porosity losses caused by gas because of the production and entrapment of oxygen in the ORC column and hydrogen in the Fe^0 column should not be ignored. Volatilization, precipitation and porosity losses were considered to be the main drawbacks of the ORC-GAC-Fe^0-CaCO3 system in remediating the MCB and TCE-contaminated aquifers. Thus, measurements such as using a suitable oxygen-releasing compound, weakening the increase in pH using a buffer material such as soil, stimulating biodegradation rates and minimizing the plugging caused by the relatively high dissolved oxygen levels should be taken to eliminate the drawbacks and to improve the efficiency of the ORC-GAC-Fe^0-CaCO3 system. 展开更多
关键词 groundwater remediation monochlorobenzene ORC-GAC-Fe^0-CaCO3 system TRICHLOROETHYLENE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部