With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of th...With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.展开更多
Diyarbaklr basalt aquifer is volcanic-rock aquifers which contain high quality water. It was main resources for Diyarbaklr city center drinking supply up to 2005. Somewhere, basalt aquifer groundwater is still used fo...Diyarbaklr basalt aquifer is volcanic-rock aquifers which contain high quality water. It was main resources for Diyarbaklr city center drinking supply up to 2005. Somewhere, basalt aquifer groundwater is still used for irrigation in rural areas of Diyarbaklr city. In the study, Diyarbaklr city center's (which is located on the Tigris river basin) basalt aquifer groundwater potentials and hydrogeological features are examined and modeled by using GIS programmer. Firstly, general geological data, meteorological data and general information about natural water sources are collected together, afterwards, logs of well drilled by public institutions and private individuals within the Diyarbaklr city center are analyzed. Static water level, dynamic water level and well pumps yields are classified in these logs. Then, thematic maps produced with the help of Arc Info Professional GIS programmer with geostatistical analyst tool. Groundwater source potential of Diyarbaktr is examined by means of these thematic maps. In hydrogeological research, productivity by aquifer features, water retention capacity and groundwater level data evaluated with geological structure of area are taken into consideration.展开更多
This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological stru...This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.展开更多
Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were el...Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were elucidated. Most of the wall rock of the coal reservoir is mudstone and silt, which is a favourable enclosing terrane. Burial depth of the main excavating coat seam is moderate. The groundwater activity is thin, and there are absolute groundwater systems between each coal seam, which make poor intercon- nections to accelerate CBM enrichment. In our research, the area coal reservoir meta- morphosis is high, CBM content is high, hole-cranny system development degree is high, and permeability of the great mass of the main coal seam exceeds 0.1×10^-3 μm2, The result demonstrates that the southeast of the Gemudi syncline has the best conditions for prospecting and exploiting CBM.展开更多
In this study, groundwater quality and water features of Diyarbakir urban basalt aquifer which contains Baglar, Kayapmar, Sur and Yenisehir residential areas aimed to be determined. At this location, water wells opene...In this study, groundwater quality and water features of Diyarbakir urban basalt aquifer which contains Baglar, Kayapmar, Sur and Yenisehir residential areas aimed to be determined. At this location, water wells opened for drinking water and irrigation water are used in the agricultural field. Therefore, in the study area, which opened in water samples taken from water wells were examined. It was reformed in the field, water samples were taken from the predrilled water wells. Water wells in the same coordinates are determined by Garmin etrex 30 handheld GPS system. Chemical analysis of water samples taken in the laboratory was made. The wells water's pH, Electrical Conductivity (EC) and Dissolved Solids (TDS) features were acquired by Portable Hanna HI 98125 pH/EC/TDS/℃ meter device at the field. At this study, basalt aquifer features are considered, and water quality and water chemical properties were determined in Diyarbakir city centre, pH, EC and TDS values of the water samples taken on site and those water chemical analyses were measured in the laboratory. Then, they were modelled by using ARC INFO 10.2.1 GIS programme and geostatistical analyst extension tool. At the end of this process, thematic map of Diyarbakir's basalt aquifer pH, EC and TDS were produced.展开更多
基金Projects 40372123, 40772192 supported by the National Natural Science Foundation of ChinaNCET-04-0486 by the Program for New Century Excellent Talents in University of China2007CB209400 by the National Basic Research Program of China
文摘With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.
文摘Diyarbaklr basalt aquifer is volcanic-rock aquifers which contain high quality water. It was main resources for Diyarbaklr city center drinking supply up to 2005. Somewhere, basalt aquifer groundwater is still used for irrigation in rural areas of Diyarbaklr city. In the study, Diyarbaklr city center's (which is located on the Tigris river basin) basalt aquifer groundwater potentials and hydrogeological features are examined and modeled by using GIS programmer. Firstly, general geological data, meteorological data and general information about natural water sources are collected together, afterwards, logs of well drilled by public institutions and private individuals within the Diyarbaklr city center are analyzed. Static water level, dynamic water level and well pumps yields are classified in these logs. Then, thematic maps produced with the help of Arc Info Professional GIS programmer with geostatistical analyst tool. Groundwater source potential of Diyarbaktr is examined by means of these thematic maps. In hydrogeological research, productivity by aquifer features, water retention capacity and groundwater level data evaluated with geological structure of area are taken into consideration.
文摘This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.
基金Supported by the"973"Key Foundation of China(2009CB219605)the National Natural Science Foundation of China(40730422,40802032)the Special of Major National Science and Technology of China(2008ZX05034)
文摘Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were elucidated. Most of the wall rock of the coal reservoir is mudstone and silt, which is a favourable enclosing terrane. Burial depth of the main excavating coat seam is moderate. The groundwater activity is thin, and there are absolute groundwater systems between each coal seam, which make poor intercon- nections to accelerate CBM enrichment. In our research, the area coal reservoir meta- morphosis is high, CBM content is high, hole-cranny system development degree is high, and permeability of the great mass of the main coal seam exceeds 0.1×10^-3 μm2, The result demonstrates that the southeast of the Gemudi syncline has the best conditions for prospecting and exploiting CBM.
文摘In this study, groundwater quality and water features of Diyarbakir urban basalt aquifer which contains Baglar, Kayapmar, Sur and Yenisehir residential areas aimed to be determined. At this location, water wells opened for drinking water and irrigation water are used in the agricultural field. Therefore, in the study area, which opened in water samples taken from water wells were examined. It was reformed in the field, water samples were taken from the predrilled water wells. Water wells in the same coordinates are determined by Garmin etrex 30 handheld GPS system. Chemical analysis of water samples taken in the laboratory was made. The wells water's pH, Electrical Conductivity (EC) and Dissolved Solids (TDS) features were acquired by Portable Hanna HI 98125 pH/EC/TDS/℃ meter device at the field. At this study, basalt aquifer features are considered, and water quality and water chemical properties were determined in Diyarbakir city centre, pH, EC and TDS values of the water samples taken on site and those water chemical analyses were measured in the laboratory. Then, they were modelled by using ARC INFO 10.2.1 GIS programme and geostatistical analyst extension tool. At the end of this process, thematic map of Diyarbakir's basalt aquifer pH, EC and TDS were produced.