With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of th...With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.展开更多
This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological stru...This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.展开更多
Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, ...Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, and put forward a corresponding calculatingmodel demonstrated by practical example.The study provides mining areas,which are covered with a very thick Quaternary soil layer and abundant ground water, witha theoretical basis aimed at forecasting the settling of ground surface.展开更多
Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future ...Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future availability of groundwater to meet domestic, agricultural, industrial, and environmental needs. Deep understanding of spatial and temporal water table dynamics together with transport processes is required. This paper gathers historical geological, hidrological and chemical information for quantitative and qualitative as well as spatial and temporal evolution of groundwater for Aguanaval and Chupaderos aquifers, both surrounding Calera aquifer in Mexico. Historical databases were employed to determine temporal trends of water levels and values were projected for years 2010, 2030 and 2050. Potential recharge sites were also identified through water level-topography correlation. The water quality analysis was completed by obtaining, through geostatistics, spatial distributions for bicarbonate, chloride, sulfate, total dissolved solids, temperature, and sodium, employing databases generated in recent sampling campaigns. This analysis provided additional elements to help understand the functioning of groundwater in studied aquifers. Finally, results were compared with permissible values established in the Mexican norm.展开更多
A conceptual model for the Calera Aquifer has been created to represent the aquifer system beneath the Calera Aquifer Region (CAR) in the State of Zacatecas, Mexico. The CAR area was uniformly partitioned into a 500...A conceptual model for the Calera Aquifer has been created to represent the aquifer system beneath the Calera Aquifer Region (CAR) in the State of Zacatecas, Mexico. The CAR area was uniformly partitioned into a 500 x 500 m grid generating a high resolution model that represented the natural boundaries of the aquifer. A computer model was calibrated and validated to verify output from the model corresponding to situations that matched the historical aquifer performance. Predicted groundwater levels were compared with measured data collected from nine observation wells between 1954 and 2004 to evaluate model performance. The main objective of this study was to develop and evaluate a groundwater modeling system using ModFlow-2000 for the CAR. Performance statistics indicated that the model performed well in simulating historic groundwater levels in the central part of the CAR where irrigated agriculture was concentrated. Results evaluation yielded average coefficients of determination of 0.81 and 0.67 and root mean square error values lower than 25.1 m and 25.9 m for the calibration and validation processes, respectively. These results are indicative of a good agreement between predicted and observed groundwater levels. However, further improvements in the conceptual model may be needed to improve predictions in other parts of the CAR for evaluating alternative groundwater management strategies.展开更多
基金Projects 40372123, 40772192 supported by the National Natural Science Foundation of ChinaNCET-04-0486 by the Program for New Century Excellent Talents in University of China2007CB209400 by the National Basic Research Program of China
文摘With an increase of mining the upper limits under unconsolidated aquifers, dewatering of the bottom aquifer of the Quaternary system has become a major method to avoid water and sand inrushes.In the 8th District of the Taiping Coal Mine in south-western Shandong province, the bottom aquifer of the Quaternary system is moderate to excellent in water-yielding capacity.The base rock above the coal seam is very thin in the concealed coal field of the Carboniferous and Permian systems.Therefore, a comprehensive dewatering plan from both the ground surface and the panel was proposed to lower the groundwater level in order to ensure mining safety.According to the hydrogeologic conditions of the 8th District, we established a numerical model so that we could simulate the groundwater flow in the dewatering process.We obtained the simulation parameters from previous data using backward modeling, such as the average coefficient of permeability of 12 m/d and the elastic storage coefficient of 0.002.From the same model, we predicted the movement of groundwater and water level variables and obtained the visible effect of the dewatering project.Despite the overburden failure during mining, no water and/or sand inrush occurred because the groundwater level in the bottom aquifer was lowered to a safe water level.
文摘This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.
文摘Based on the basic principles of hydrogeology and soil mechanics, studied thegenesis mechanism and control factors of settling of ground surface caused by the drainageof the aquifer in the construction of coal mines, and put forward a corresponding calculatingmodel demonstrated by practical example.The study provides mining areas,which are covered with a very thick Quaternary soil layer and abundant ground water, witha theoretical basis aimed at forecasting the settling of ground surface.
文摘Adequate regional groundwater assessment studies are essential for the correct groundwater management by policy/decision makers; increased use of groundwater resources and drought have led to concern about the future availability of groundwater to meet domestic, agricultural, industrial, and environmental needs. Deep understanding of spatial and temporal water table dynamics together with transport processes is required. This paper gathers historical geological, hidrological and chemical information for quantitative and qualitative as well as spatial and temporal evolution of groundwater for Aguanaval and Chupaderos aquifers, both surrounding Calera aquifer in Mexico. Historical databases were employed to determine temporal trends of water levels and values were projected for years 2010, 2030 and 2050. Potential recharge sites were also identified through water level-topography correlation. The water quality analysis was completed by obtaining, through geostatistics, spatial distributions for bicarbonate, chloride, sulfate, total dissolved solids, temperature, and sodium, employing databases generated in recent sampling campaigns. This analysis provided additional elements to help understand the functioning of groundwater in studied aquifers. Finally, results were compared with permissible values established in the Mexican norm.
文摘A conceptual model for the Calera Aquifer has been created to represent the aquifer system beneath the Calera Aquifer Region (CAR) in the State of Zacatecas, Mexico. The CAR area was uniformly partitioned into a 500 x 500 m grid generating a high resolution model that represented the natural boundaries of the aquifer. A computer model was calibrated and validated to verify output from the model corresponding to situations that matched the historical aquifer performance. Predicted groundwater levels were compared with measured data collected from nine observation wells between 1954 and 2004 to evaluate model performance. The main objective of this study was to develop and evaluate a groundwater modeling system using ModFlow-2000 for the CAR. Performance statistics indicated that the model performed well in simulating historic groundwater levels in the central part of the CAR where irrigated agriculture was concentrated. Results evaluation yielded average coefficients of determination of 0.81 and 0.67 and root mean square error values lower than 25.1 m and 25.9 m for the calibration and validation processes, respectively. These results are indicative of a good agreement between predicted and observed groundwater levels. However, further improvements in the conceptual model may be needed to improve predictions in other parts of the CAR for evaluating alternative groundwater management strategies.