The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlo...The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlorobenzene (MCB) and trichloroethylene (TCE)-contaminated aquifers using the ORC-GAC-Fe^0-CaCO3 system. The system consisted of four columns (112 cm long and 10 cm in diameter) with oxygen-releasing compound (ORC), granular activated carbon (GAC), zero-valent iron (Fe^0), and calcite used sequentially as the reactive media. The concentrations of MCB in the GAC column effluent and TCE in the Fe^0 column effluent were below the detection limit. However, the concentrations of MCB and TCE in the final calcite column exceeded the maximum contaminant level (MCL) under the Safe Drinking Water Act of the US Environmental Protection Agency (US EPA) that protects human health and environment. These results suggested that partitioning of MCB and TCE into the gas phase could occur, and also that transportation of volatile organic pollutants in the gas phase was important. Three main precipitates formed in the ORC-GAC-Fe^0-CaCO3 system: CaCO3 in the ORC column along with Fe(OH)2 and FeCO3 in the Fe^0 column. The total porosity losses caused by mineral precipitation corresponded to about 0.24% porosity in the ORC column, and 1% in the Fe^0 column. The most important cause of porosity losses was anaerobic corrosion of iron. The porosity losses caused by gas because of the production and entrapment of oxygen in the ORC column and hydrogen in the Fe^0 column should not be ignored. Volatilization, precipitation and porosity losses were considered to be the main drawbacks of the ORC-GAC-Fe^0-CaCO3 system in remediating the MCB and TCE-contaminated aquifers. Thus, measurements such as using a suitable oxygen-releasing compound, weakening the increase in pH using a buffer material such as soil, stimulating biodegradation rates and minimizing the plugging caused by the relatively high dissolved oxygen levels should be taken to eliminate the drawbacks and to improve the efficiency of the ORC-GAC-Fe^0-CaCO3 system.展开更多
Nowadays,a certain amount of landfills in China were constructed without horizontal liner system.The research conducted focuses mainly on the contaminants from landfill leachate migrating in the aquifer of a fractured...Nowadays,a certain amount of landfills in China were constructed without horizontal liner system.The research conducted focuses mainly on the contaminants from landfill leachate migrating in the aquifer of a fractured granite area,and pollution predictions for groundwater were made by establishing numerical model with Visual Modflow combining field investigation like geological surveys,drilling,geophysical explorations,hydrogeological experiments,water quality analysis.The transportation of the chloride ion from landfill in the aquifer was simulated in the model with time frames of 2 555,3 650,5 475 and7 300 d.The model shows that from 2 555 d to 7 300 d starting from 2003,the chloride ion migrated from 900 m to 1 300 m,respectively,along the groundwater flow.The results indicate that as leachate plume migrated in the aquifer,the concentration of the pollutants can be up to 19.74 to 251.76 times that of background value.The research proves that the leachate poses a threat to the local water body and offers a reference towards groundwater pollution prevention for fractured granite landfill sites.展开更多
文摘The objectives of this study were to illustrate the reaction processes, to identify and quantify the precipitates formed, and to estimate the porosity losses in order to eliminate drawbacks during remediating monochlorobenzene (MCB) and trichloroethylene (TCE)-contaminated aquifers using the ORC-GAC-Fe^0-CaCO3 system. The system consisted of four columns (112 cm long and 10 cm in diameter) with oxygen-releasing compound (ORC), granular activated carbon (GAC), zero-valent iron (Fe^0), and calcite used sequentially as the reactive media. The concentrations of MCB in the GAC column effluent and TCE in the Fe^0 column effluent were below the detection limit. However, the concentrations of MCB and TCE in the final calcite column exceeded the maximum contaminant level (MCL) under the Safe Drinking Water Act of the US Environmental Protection Agency (US EPA) that protects human health and environment. These results suggested that partitioning of MCB and TCE into the gas phase could occur, and also that transportation of volatile organic pollutants in the gas phase was important. Three main precipitates formed in the ORC-GAC-Fe^0-CaCO3 system: CaCO3 in the ORC column along with Fe(OH)2 and FeCO3 in the Fe^0 column. The total porosity losses caused by mineral precipitation corresponded to about 0.24% porosity in the ORC column, and 1% in the Fe^0 column. The most important cause of porosity losses was anaerobic corrosion of iron. The porosity losses caused by gas because of the production and entrapment of oxygen in the ORC column and hydrogen in the Fe^0 column should not be ignored. Volatilization, precipitation and porosity losses were considered to be the main drawbacks of the ORC-GAC-Fe^0-CaCO3 system in remediating the MCB and TCE-contaminated aquifers. Thus, measurements such as using a suitable oxygen-releasing compound, weakening the increase in pH using a buffer material such as soil, stimulating biodegradation rates and minimizing the plugging caused by the relatively high dissolved oxygen levels should be taken to eliminate the drawbacks and to improve the efficiency of the ORC-GAC-Fe^0-CaCO3 system.
基金Project(12JJ305)supported by the Education Department of Hunan Province,China
文摘Nowadays,a certain amount of landfills in China were constructed without horizontal liner system.The research conducted focuses mainly on the contaminants from landfill leachate migrating in the aquifer of a fractured granite area,and pollution predictions for groundwater were made by establishing numerical model with Visual Modflow combining field investigation like geological surveys,drilling,geophysical explorations,hydrogeological experiments,water quality analysis.The transportation of the chloride ion from landfill in the aquifer was simulated in the model with time frames of 2 555,3 650,5 475 and7 300 d.The model shows that from 2 555 d to 7 300 d starting from 2003,the chloride ion migrated from 900 m to 1 300 m,respectively,along the groundwater flow.The results indicate that as leachate plume migrated in the aquifer,the concentration of the pollutants can be up to 19.74 to 251.76 times that of background value.The research proves that the leachate poses a threat to the local water body and offers a reference towards groundwater pollution prevention for fractured granite landfill sites.