The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone...The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone aquifers.Our study describes the mechanism of mine water inrushes through a fault in the mine floor using principles of strata mechanics and the path of water inrush from an aquifer to the working face.A criterion to judge whether a ground water inrush will occur through a fault or not is also described, together with a case history of water inflow in the Feicheng coalfield, China.展开更多
To study the behavior of overlying strata and the likelihood of water inrush and quicksand with different mining sequences under an unconsolidated alluvium aquifer, a numerical model based on the fluid-solid coupling ...To study the behavior of overlying strata and the likelihood of water inrush and quicksand with different mining sequences under an unconsolidated alluvium aquifer, a numerical model based on the fluid-solid coupling theory was con- structed by FLAC3D. Simulation results revealed that the mining sequences had a significant influence on the seepage, dis- placement and failure characteristics of the overlying strata. In this kind of geological and hydrogeological conditions, the workface close to the outcrop of coal seam easily suffers from water inrush and quicksand during mining. In the simulation re- sults, the plastic zone, vertical displacement and pore water pressure in the overlying strata of the workface decrease more or less using the upward mining sequence than using the downward mining sequence. Therefore, the application of the upward mining sequence in the process of mining is preferential to prevent water inrush and quicksand.展开更多
An understanding of the long-term changes in the nitrate and microbial contamination pattern of the groundwater of Sidi Bouzid (Centre West of Tunisia) is critical to conservation of drinking water in rural areas su...An understanding of the long-term changes in the nitrate and microbial contamination pattern of the groundwater of Sidi Bouzid (Centre West of Tunisia) is critical to conservation of drinking water in rural areas supporting mixed land-use activities such as cropping, livestock farming, and residence. The phreatic aquifer was revealed polluted by domestic disposals of the wastewaters in the urban zone. The average nitrate concentration in the groundwater of the east of the mioplioquaternary aquifer of Saddaguia (Sidi Bouzid) rose from 50 mg NO3- during 1996 to over 100 mg in 2003, which represents an increase of some 10 mg per year. Nitrate groundwater pollution during the period 1996-2003 was the result of the abusive use of fertilizers.In the cultivated zone, we must reduce the effects of the excessive use of the nitrogen fertilizers on the basis of monitoring soil once a year, managing water resources, rationalizing the use of the chemical substances. In urban zones, most of lost wells located in the perimeter reveal the gravity of the state of the aquifer. This last is organically polluted and requires an immediate action for the generalization of the purification network. We need to take into account the reality of under soil in all future planning's and arrangements. A scheme of sanitation seems necessary before all plans of arrangement. The extension of the sewer network must give the priority to the most vulnerable zones.展开更多
基金Projects Y2007F46 supported by the Natural Science Foundation of Shandong Province20070424005 by the Doctor Disciplines Special Scientific Researc Foundation of the Ministry of Education+1 种基金108158 by the Key Project of the Ministry of Education of China50539080 by the National Natural Scienc Foundation of China
文摘The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries.In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone aquifers.Our study describes the mechanism of mine water inrushes through a fault in the mine floor using principles of strata mechanics and the path of water inrush from an aquifer to the working face.A criterion to judge whether a ground water inrush will occur through a fault or not is also described, together with a case history of water inflow in the Feicheng coalfield, China.
文摘To study the behavior of overlying strata and the likelihood of water inrush and quicksand with different mining sequences under an unconsolidated alluvium aquifer, a numerical model based on the fluid-solid coupling theory was con- structed by FLAC3D. Simulation results revealed that the mining sequences had a significant influence on the seepage, dis- placement and failure characteristics of the overlying strata. In this kind of geological and hydrogeological conditions, the workface close to the outcrop of coal seam easily suffers from water inrush and quicksand during mining. In the simulation re- sults, the plastic zone, vertical displacement and pore water pressure in the overlying strata of the workface decrease more or less using the upward mining sequence than using the downward mining sequence. Therefore, the application of the upward mining sequence in the process of mining is preferential to prevent water inrush and quicksand.
文摘An understanding of the long-term changes in the nitrate and microbial contamination pattern of the groundwater of Sidi Bouzid (Centre West of Tunisia) is critical to conservation of drinking water in rural areas supporting mixed land-use activities such as cropping, livestock farming, and residence. The phreatic aquifer was revealed polluted by domestic disposals of the wastewaters in the urban zone. The average nitrate concentration in the groundwater of the east of the mioplioquaternary aquifer of Saddaguia (Sidi Bouzid) rose from 50 mg NO3- during 1996 to over 100 mg in 2003, which represents an increase of some 10 mg per year. Nitrate groundwater pollution during the period 1996-2003 was the result of the abusive use of fertilizers.In the cultivated zone, we must reduce the effects of the excessive use of the nitrogen fertilizers on the basis of monitoring soil once a year, managing water resources, rationalizing the use of the chemical substances. In urban zones, most of lost wells located in the perimeter reveal the gravity of the state of the aquifer. This last is organically polluted and requires an immediate action for the generalization of the purification network. We need to take into account the reality of under soil in all future planning's and arrangements. A scheme of sanitation seems necessary before all plans of arrangement. The extension of the sewer network must give the priority to the most vulnerable zones.