The selective removal of arsenic from arsenic-bearing dust containing Pb and Sb in alkaline solution was studied. The influence of Na OH concentration, temperature, leaching time, liquid to solid ratio, and the presen...The selective removal of arsenic from arsenic-bearing dust containing Pb and Sb in alkaline solution was studied. The influence of Na OH concentration, temperature, leaching time, liquid to solid ratio, and the presence of elemental sulfur on the dissolution of As, Sb and Pb in Na OH solution was investigated. The results indicate that the presence of elemental sulfur can effectively prevent leaching of lead and antimony from arsenic. The Sb2O3, As2O3 and Pb5(AsO4)3 OH in the raw material convert to NaSb(OH)6 and PbS in the leaching residue, while arsenic is leached out as As(Ⅲ) or As(Ⅴ) ions in the leaching solution. Arsenic leaching efficiency of 99.84% can be achieved under the optimized conditions, while 97.82% of Sb and 99.97% of Pb remain in the leach residue with the arsenic concentration of less than 0.1%. A novel route is presented for the selective removal of arsenic and potential recycle of lead and antimony from the arsenic-bearing dust leached by Na OH solutions with the addition of elemental sulfur.展开更多
A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation...A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation time 40 s and holding time 8 min.The recovery rate of iron was 89.93%.The optimum experiment conditions of vanadium extraction were total oxidation time of 126 s,NaOH concentration of 4.0 mol/L,leaching temperature of 95℃,leaching time of 90 min,and the number of cycle was 4.The leaching rate of vanadium was 92.13%.The optimal experiment conditions of titanium extraction were HCl concentration of 4.5 mol/L,leaching temperature of 75℃,and leaching time of 90 min.The TiO_(2)content of synthetic rutile was 98.61%.展开更多
The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied. Three aspects were examined: the micro-morphology, the mineral composition and the content of heavy metals. The result...The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied. Three aspects were examined: the micro-morphology, the mineral composition and the content of heavy metals. The results show that the fly ash from plants using a circulating fluidized bed are more irregular par- ticles, while the particles from the plants using a pulverized coal-fired boiler are mainly spherical in shape. Quartz and mullite are the main crystalline phases in the ash. Clearly, both the technology and the coal used by a power plant can influence the mineral composition of the ash. The mineral composition of fly ash from a circulating fiuidized bed is more complex than that from a pulverized coal-fired boiler. The quantity of elements found in the fly ash is greater than that found in the bottom ash for the same plant. Heavy metals are likely to be enriched in the fly ash. Heavy metal leachability was studied using two leaching methods. The results indicate that most of the heavy metals that leached during either batch leaching or column leaching experiments did not exceed the related maximum concentration standards. But Ni concentrations in the leachates from both batch and column tests exceed the standard. The highest excess rates in both tests were 572~ and 497~, which levels might threaten the environment.展开更多
The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching...The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching efficiency by changing valence state of arsenic.The results show that the concentration of As 3+ is larger than that of As 5+ in the lag phase.The concentration of As 3+ decreases in the log phase,and is lower than that of As5 +.HQ-0211 typed bacteria express better resistance for As 3+and As 5+and remain growing when the concentrations of As3 +and As 5+are above 6.0 g/L and 12.0 g/L,respectively.It is found that Fe 3+cannot oxidize As3 +singly as strong oxidant in the leaching system,but can cooperate with pyrite or chalcopyrite to do that.The oxidation of As 3+ is prompted with addition of H2O2.The bacterial activity is improved in favor of bacterial leaching efficiency.NaClO restrains the bacterial growth to depress leaching efficiency because of the chloric compounds affecting bacterial activity.展开更多
To shorten the bioleaching cycle of arsenic-containing gold concentrate, surfactants were used to promote the interaction between bacteria and ore to increase the arsenic leaching rate. Three different kinds of surfac...To shorten the bioleaching cycle of arsenic-containing gold concentrate, surfactants were used to promote the interaction between bacteria and ore to increase the arsenic leaching rate. Three different kinds of surfactants were used to evaluate the effects of surfactants on the growth of bacteria and arsenic leaching rate of arsenic-containing gold concentrate. The mechanism underlying surfactant enhancement was also studied. Results show that when relatively low-concentration surfactants are added to the medium, no significant difference is observed in the growth and Fe2+ oxidation ability of the bacteria compared with no surfactant in the medium. However, only the anionic surfactant calcium lignosulfonate and the nonionic surfactant Tween 80 are found to improve the arsenic leaching rates. Their optimum mass concentrations are 30 and 80 mg/L, respectively. At such optimum mass concentrations, the arsenic leaching rates are approximately 13.7% and 9.1% higher than those without the addition of surfactant, respectively. Mechanism research reveals that adding the anionic surfactant calcium lignosulfonate improves the percentage of bacterial adhesion on the mineral surface and decreases the surface tension in the leaching solution.展开更多
基金Project(51604303) supported by the National Natural Science Foundation of ChinaProject(2019JJ20031) supported by the Hunan Natural Science Fund for Distinguished Young Scholar,China
文摘The selective removal of arsenic from arsenic-bearing dust containing Pb and Sb in alkaline solution was studied. The influence of Na OH concentration, temperature, leaching time, liquid to solid ratio, and the presence of elemental sulfur on the dissolution of As, Sb and Pb in Na OH solution was investigated. The results indicate that the presence of elemental sulfur can effectively prevent leaching of lead and antimony from arsenic. The Sb2O3, As2O3 and Pb5(AsO4)3 OH in the raw material convert to NaSb(OH)6 and PbS in the leaching residue, while arsenic is leached out as As(Ⅲ) or As(Ⅴ) ions in the leaching solution. Arsenic leaching efficiency of 99.84% can be achieved under the optimized conditions, while 97.82% of Sb and 99.97% of Pb remain in the leach residue with the arsenic concentration of less than 0.1%. A novel route is presented for the selective removal of arsenic and potential recycle of lead and antimony from the arsenic-bearing dust leached by Na OH solutions with the addition of elemental sulfur.
基金financial support from the National Science and Technology Support Program of China(No.2015BAB18B00)。
文摘A two-stage oxidation—alkali leaching—acid leaching method was proposed to recovery Fe,V,and Ti in modified Ti-bearing blast furnace slag.The optimal experiment conditions of iron extraction were one-stage oxidation time 40 s and holding time 8 min.The recovery rate of iron was 89.93%.The optimum experiment conditions of vanadium extraction were total oxidation time of 126 s,NaOH concentration of 4.0 mol/L,leaching temperature of 95℃,leaching time of 90 min,and the number of cycle was 4.The leaching rate of vanadium was 92.13%.The optimal experiment conditions of titanium extraction were HCl concentration of 4.5 mol/L,leaching temperature of 75℃,and leaching time of 90 min.The TiO_(2)content of synthetic rutile was 98.61%.
基金provided by the Europe-AsiaLink (No. CN/ASIA-LINK/010 94556)State Scholarship Fund of China Scholarship Council (No. 2010642035)
文摘The physicochemical properties of fly ash from two kinds of coal-fired power plants were studied. Three aspects were examined: the micro-morphology, the mineral composition and the content of heavy metals. The results show that the fly ash from plants using a circulating fluidized bed are more irregular par- ticles, while the particles from the plants using a pulverized coal-fired boiler are mainly spherical in shape. Quartz and mullite are the main crystalline phases in the ash. Clearly, both the technology and the coal used by a power plant can influence the mineral composition of the ash. The mineral composition of fly ash from a circulating fiuidized bed is more complex than that from a pulverized coal-fired boiler. The quantity of elements found in the fly ash is greater than that found in the bottom ash for the same plant. Heavy metals are likely to be enriched in the fly ash. Heavy metal leachability was studied using two leaching methods. The results indicate that most of the heavy metals that leached during either batch leaching or column leaching experiments did not exceed the related maximum concentration standards. But Ni concentrations in the leachates from both batch and column tests exceed the standard. The highest excess rates in both tests were 572~ and 497~, which levels might threaten the environment.
基金Projects(50674029, 50874030) supported by the National Natural Science Foundation of ChinaProject(2006AA06Z127) supported by the National High-tech Research and Development Program of ChinaProject(20060145015) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘The concentration and variational trend of As3 +and As 5+,the bacterial resistance for the As 3+and As 5+and converting conditions from As3 +to As 5+were analyzed.The additive was used to prompt the bacterial leaching efficiency by changing valence state of arsenic.The results show that the concentration of As 3+ is larger than that of As 5+ in the lag phase.The concentration of As 3+ decreases in the log phase,and is lower than that of As5 +.HQ-0211 typed bacteria express better resistance for As 3+and As 5+and remain growing when the concentrations of As3 +and As 5+are above 6.0 g/L and 12.0 g/L,respectively.It is found that Fe 3+cannot oxidize As3 +singly as strong oxidant in the leaching system,but can cooperate with pyrite or chalcopyrite to do that.The oxidation of As 3+ is prompted with addition of H2O2.The bacterial activity is improved in favor of bacterial leaching efficiency.NaClO restrains the bacterial growth to depress leaching efficiency because of the chloric compounds affecting bacterial activity.
基金Projects(51104024,51374043)supported by National Natural Science Foundation of ChinaProject(10JJ6019)supported by Hunan Provincial Natural Science Foundation,China+1 种基金Project(10C0399)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2014SK3182)supported by Hunan Provincial Science&Technology Department,China
文摘To shorten the bioleaching cycle of arsenic-containing gold concentrate, surfactants were used to promote the interaction between bacteria and ore to increase the arsenic leaching rate. Three different kinds of surfactants were used to evaluate the effects of surfactants on the growth of bacteria and arsenic leaching rate of arsenic-containing gold concentrate. The mechanism underlying surfactant enhancement was also studied. Results show that when relatively low-concentration surfactants are added to the medium, no significant difference is observed in the growth and Fe2+ oxidation ability of the bacteria compared with no surfactant in the medium. However, only the anionic surfactant calcium lignosulfonate and the nonionic surfactant Tween 80 are found to improve the arsenic leaching rates. Their optimum mass concentrations are 30 and 80 mg/L, respectively. At such optimum mass concentrations, the arsenic leaching rates are approximately 13.7% and 9.1% higher than those without the addition of surfactant, respectively. Mechanism research reveals that adding the anionic surfactant calcium lignosulfonate improves the percentage of bacterial adhesion on the mineral surface and decreases the surface tension in the leaching solution.