observation data obtained in a mesoscale convective system are compared to Weather Research and Forecasting(WRF)model simulations using four microphysics schemes(Morrison,WSM6,P3,SBM)with different complexities.The ma...observation data obtained in a mesoscale convective system are compared to Weather Research and Forecasting(WRF)model simulations using four microphysics schemes(Morrison,WSM6,P3,SBM)with different complexities.The main purpose of this paper is to assess the performance of the microphysics ensemble in terms of cloud microphysical properties.Results show that although the vertical distributions of liquid water content(LWC)and ice water content(IWC)simulated by the four members are quite different in the convective cloud region,they are relatively uniform in the stratiform cloud region.Overall,the results of the Morrison scheme are very similar to the ensemble average,and both of them are closer to the observations compared to the other schemes.Besides,the authors also note that all members still overpredict the LWC by a factor of 2–8 in some regions,resulting in large deviation between the observation and ensemble average.展开更多
The prediction of the particle number concentration and liquid/ice water content of cloud is significant for many aspects of atmospheric science.However,given the uncertainties in the initial and boundary conditions a...The prediction of the particle number concentration and liquid/ice water content of cloud is significant for many aspects of atmospheric science.However,given the uncertainties in the initial and boundary conditions and imperfections of microphysical schemes,the accurate prediction of these microphysical properties of cloud is still a big challenge.The ensemble approach may be a viable way to reduce forecast uncertainties.In this paper,a large-scale stratiform cloud precipitation process is studied by comparing results of a 10-member ensemble forecast model with aircraft observation data.By means of the ensemble average,the prediction of bulk parameters such as liquid water content and ice water content can be improved in comparison with the control member,but the particle number concentrations are still one to two orders of magnitude less than those from observations.Intercomparison of raindrop size spectra reveals a big distinction between observations and predictions for particles with a diameter less than 1000μm.展开更多
A sand culture experiment was conducted to determine the effects of different seawater (5% and 10%) treatments on plant growth,inorganic ions,indole alkaloid concentrations and yields of Catharanthus roseus,in an effo...A sand culture experiment was conducted to determine the effects of different seawater (5% and 10%) treatments on plant growth,inorganic ions,indole alkaloid concentrations and yields of Catharanthus roseus,in an effort to increase the alkaloid yield by artificial cultivation.The total fresh and dry weights and tissue K + concentrations decreased,but Na + concentrations increased in the plant roots,stems and leaves of C.roseus under seawater stress as compared to the control.The concentrations and yields of vindoline,catharanthine,vinblastine and vincristine increased under seawater stress.The concentrations and yields of these alkaloids were higher in 5% seawater-treated plants than those in the 10% seawater-treated plants.Considering the industrial production,5% seawater treatments could reduce the cost of producing alkaloid.In the control plants,the highest alkaloid concentrations reached a peak at 100 days after planting,suggesting that plant harvest must be optimized in terms of growth duration.展开更多
基金supported by the National Key R&D Program of Chinagrant number 2018YFC1507900the Demonstration Project of Artificial Precipitation Enhancement and Hail Suppression Operation Technology at the Eastern Side of the Taihang Mountains grant number hbrywcsy-2017-2sponsored by the National Natural Science Foundation of China grant numbers 41530427 and 41875172。
文摘observation data obtained in a mesoscale convective system are compared to Weather Research and Forecasting(WRF)model simulations using four microphysics schemes(Morrison,WSM6,P3,SBM)with different complexities.The main purpose of this paper is to assess the performance of the microphysics ensemble in terms of cloud microphysical properties.Results show that although the vertical distributions of liquid water content(LWC)and ice water content(IWC)simulated by the four members are quite different in the convective cloud region,they are relatively uniform in the stratiform cloud region.Overall,the results of the Morrison scheme are very similar to the ensemble average,and both of them are closer to the observations compared to the other schemes.Besides,the authors also note that all members still overpredict the LWC by a factor of 2–8 in some regions,resulting in large deviation between the observation and ensemble average.
基金supported by the National Key R&D Program of China grant number 2018YFC1507900the Demonstration Project of Artificial Precipitation Enhancement and Hail Suppression Operation Technology at the Eastern Side of the Taihang Mountains grant number hbrywcsy-2017-2sponsored by the National Natural Science Foundation of China grant numbers 41530427 and 41875172。
文摘The prediction of the particle number concentration and liquid/ice water content of cloud is significant for many aspects of atmospheric science.However,given the uncertainties in the initial and boundary conditions and imperfections of microphysical schemes,the accurate prediction of these microphysical properties of cloud is still a big challenge.The ensemble approach may be a viable way to reduce forecast uncertainties.In this paper,a large-scale stratiform cloud precipitation process is studied by comparing results of a 10-member ensemble forecast model with aircraft observation data.By means of the ensemble average,the prediction of bulk parameters such as liquid water content and ice water content can be improved in comparison with the control member,but the particle number concentrations are still one to two orders of magnitude less than those from observations.Intercomparison of raindrop size spectra reveals a big distinction between observations and predictions for particles with a diameter less than 1000μm.
基金Supported by the National High Technology Research and Development Program (863 Program) of China(No. 2007AA091702)the Open Foundation of Key Laboratory of Jiangsu Province, China (No. K04009)
文摘A sand culture experiment was conducted to determine the effects of different seawater (5% and 10%) treatments on plant growth,inorganic ions,indole alkaloid concentrations and yields of Catharanthus roseus,in an effort to increase the alkaloid yield by artificial cultivation.The total fresh and dry weights and tissue K + concentrations decreased,but Na + concentrations increased in the plant roots,stems and leaves of C.roseus under seawater stress as compared to the control.The concentrations and yields of vindoline,catharanthine,vinblastine and vincristine increased under seawater stress.The concentrations and yields of these alkaloids were higher in 5% seawater-treated plants than those in the 10% seawater-treated plants.Considering the industrial production,5% seawater treatments could reduce the cost of producing alkaloid.In the control plants,the highest alkaloid concentrations reached a peak at 100 days after planting,suggesting that plant harvest must be optimized in terms of growth duration.