Samples were collected from two core sediments(C1 and C2) of Xiangjiang River,Chang-Zhu-Tan region,Hunan Province,China.The heavy metal contents are relatively higher,especially for the surface or near the surface lay...Samples were collected from two core sediments(C1 and C2) of Xiangjiang River,Chang-Zhu-Tan region,Hunan Province,China.The heavy metal contents are relatively higher,especially for the surface or near the surface layers.The calculated anthropogenic factor values indicate that all the heavy metals except for Cr in the core samples are enriched,especially for Cd,with the maximum enriching coefficients of 119.44,and 84.67 in C1 and C2,respectively.The correlation of heavy metals with sulphur indicates that they are precipitated as metal sulphides.Correlation matrix shows significant association between heavy metals and mud.Factor analysis identifies that signified anthropogenic activities affect the region of Xiangjiang River.展开更多
The Nanfei River (Anhui Province, China) is a severely polluted urban river that flows into Chaohu Lake. In the present study, sediments were collected from the river and analyzed for their heavy metal contents. Mul...The Nanfei River (Anhui Province, China) is a severely polluted urban river that flows into Chaohu Lake. In the present study, sediments were collected from the river and analyzed for their heavy metal contents. Multivariate statistics and the fuzzy comprehensive assessment method were used to determine the sources of pollution, the current pollution status, and spatial and temporal variations in heavy metal pollution in sediments. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in sediments ranged from 5.67-113, 0.08-40.2, 41.6-524, 15.5-460, 0.03-4.84, 13.5-180, 18.8-250, and 47.9-1 996 mg/kg, and the average concentrations of each metal were 1.7, 38.7, 1.8, 5.5, l 8.8, 1.3, 2.5, and 11.1 times greater than the background values, respectively. Multivariate statistical analysis demonstrated that Hg, Cu, Cr, Cd, and Ni may have originated from industrial activities, whereas As and Pb came from agricultural activities. The fuzzy comprehensive assessment method, based on the fuzzy mathematics theory, was used to obtain a detailed assessment of the sediment quality in the Nanfei River watershed. The results indicated that the pollution was moderate in the downstream tributaries of the Nianbu and Dianbu Rivers, but was severe in the main channel of the Nanfei River and in the upstream tributaries of the Sill and Banqiao Rivers. Therefore, sediments in the Nanfei River watershed are heavily polluted and urgent measures should be taken to remedy the status.展开更多
A total of 43 sediment samples were collected at Kemaman coast, Terengganu, by using Smith Mclntyre grab. These sediments were analyzed to determine the grain size, sediment texture and metallic trace elements. Lazer ...A total of 43 sediment samples were collected at Kemaman coast, Terengganu, by using Smith Mclntyre grab. These sediments were analyzed to determine the grain size, sediment texture and metallic trace elements. Lazer diffraction method using PSA (particle size analyzer) was used to determine the grain size and sediment texture. Teflon bomb was used to digest the sediments for metallic trace elements concentration. Results showed that the study area was dominated with sand particles (60.5%) followed by loamy sand (20.9%), sandy clay (16.3%) and silt loam (2.3%). On the other hand, the average concentrations of each metallic trace elements were 0.12 pg/g for Cd; 36.6 lag/g for Cr; 9.51 pg/g for Cu; 11.6 ~tg/g for N: 41.5 ~tg/g for Zn and 29.3/ag/g for Pb. Based on the results, it was found out that coarse sediments showed lower levels of metallic trace elements and higher levels in fine sediments. In addition, enrichment factor was calculated to assess the pollution status of the study area. Based on the calculation, the enrichment of metallic trace elements ranked in the following order: Pb 〉 Cd 〉 Zn 〉 Cu 〉 Ni 〉 Cr. The significant enrichment of Pb and moderate enrichment of Cd and Zn indicated that there are anthropogenic inputs while the rest of the metals can be considered from natural sources although there are effects of anthropogenic inputs in some sampling location.展开更多
Surface sediment samples were collected from 35 locations in Sulaibikhat Bay, Kuwait. Co, Cr, Cu, Ni, Pb and Zn concentrations were determined. Grain sizes, TOC (total organic carbon), carbonate, mineralogical and e...Surface sediment samples were collected from 35 locations in Sulaibikhat Bay, Kuwait. Co, Cr, Cu, Ni, Pb and Zn concentrations were determined. Grain sizes, TOC (total organic carbon), carbonate, mineralogical and environmental data were also determined. Multiple linear regression is applied to the data from the sediment sequential extractions to assess the relative importance of mineralogical and sedimentological factors in controlling heavy metal concentrations in individual chemical fractions (exchangeable, reducible, oxidizable, residual) under different environmental conditions. The analysis shows that grain size, TOC, calcium carbonate and minerals clearly influence heavy metal concentrations. For the exchangeable fraction, clay, grain size and the mineral pyrite are the main factors, whereas for the reducible fraction, TOC is the main factor influencing concentrations ofZn, Pb, Ni, Cu and Cr. For the oxidizable fraction, modelling shows that TOC is the main factor influencing Zn, Ni, Cu, Cr and Co concentrations. The residual fraction concentrations of Zn, Ni, Cr and Co were best predicted by the abundance of sand, with sand content having a negative effect on heavy metal concentrations in this fraction. The statistical techniques in environmental data interpretation are quite useful in cutting down the volume of the data and identifying identical classes which are statistically distinct.展开更多
基金Project(1212010) supported by the China Geological Survey for Ecosystem Geochemistry Assessment in City of Changsha,Zhuzhou and Xiangtan
文摘Samples were collected from two core sediments(C1 and C2) of Xiangjiang River,Chang-Zhu-Tan region,Hunan Province,China.The heavy metal contents are relatively higher,especially for the surface or near the surface layers.The calculated anthropogenic factor values indicate that all the heavy metals except for Cr in the core samples are enriched,especially for Cd,with the maximum enriching coefficients of 119.44,and 84.67 in C1 and C2,respectively.The correlation of heavy metals with sulphur indicates that they are precipitated as metal sulphides.Correlation matrix shows significant association between heavy metals and mud.Factor analysis identifies that signified anthropogenic activities affect the region of Xiangjiang River.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07103-005)
文摘The Nanfei River (Anhui Province, China) is a severely polluted urban river that flows into Chaohu Lake. In the present study, sediments were collected from the river and analyzed for their heavy metal contents. Multivariate statistics and the fuzzy comprehensive assessment method were used to determine the sources of pollution, the current pollution status, and spatial and temporal variations in heavy metal pollution in sediments. The concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in sediments ranged from 5.67-113, 0.08-40.2, 41.6-524, 15.5-460, 0.03-4.84, 13.5-180, 18.8-250, and 47.9-1 996 mg/kg, and the average concentrations of each metal were 1.7, 38.7, 1.8, 5.5, l 8.8, 1.3, 2.5, and 11.1 times greater than the background values, respectively. Multivariate statistical analysis demonstrated that Hg, Cu, Cr, Cd, and Ni may have originated from industrial activities, whereas As and Pb came from agricultural activities. The fuzzy comprehensive assessment method, based on the fuzzy mathematics theory, was used to obtain a detailed assessment of the sediment quality in the Nanfei River watershed. The results indicated that the pollution was moderate in the downstream tributaries of the Nianbu and Dianbu Rivers, but was severe in the main channel of the Nanfei River and in the upstream tributaries of the Sill and Banqiao Rivers. Therefore, sediments in the Nanfei River watershed are heavily polluted and urgent measures should be taken to remedy the status.
文摘A total of 43 sediment samples were collected at Kemaman coast, Terengganu, by using Smith Mclntyre grab. These sediments were analyzed to determine the grain size, sediment texture and metallic trace elements. Lazer diffraction method using PSA (particle size analyzer) was used to determine the grain size and sediment texture. Teflon bomb was used to digest the sediments for metallic trace elements concentration. Results showed that the study area was dominated with sand particles (60.5%) followed by loamy sand (20.9%), sandy clay (16.3%) and silt loam (2.3%). On the other hand, the average concentrations of each metallic trace elements were 0.12 pg/g for Cd; 36.6 lag/g for Cr; 9.51 pg/g for Cu; 11.6 ~tg/g for N: 41.5 ~tg/g for Zn and 29.3/ag/g for Pb. Based on the results, it was found out that coarse sediments showed lower levels of metallic trace elements and higher levels in fine sediments. In addition, enrichment factor was calculated to assess the pollution status of the study area. Based on the calculation, the enrichment of metallic trace elements ranked in the following order: Pb 〉 Cd 〉 Zn 〉 Cu 〉 Ni 〉 Cr. The significant enrichment of Pb and moderate enrichment of Cd and Zn indicated that there are anthropogenic inputs while the rest of the metals can be considered from natural sources although there are effects of anthropogenic inputs in some sampling location.
文摘Surface sediment samples were collected from 35 locations in Sulaibikhat Bay, Kuwait. Co, Cr, Cu, Ni, Pb and Zn concentrations were determined. Grain sizes, TOC (total organic carbon), carbonate, mineralogical and environmental data were also determined. Multiple linear regression is applied to the data from the sediment sequential extractions to assess the relative importance of mineralogical and sedimentological factors in controlling heavy metal concentrations in individual chemical fractions (exchangeable, reducible, oxidizable, residual) under different environmental conditions. The analysis shows that grain size, TOC, calcium carbonate and minerals clearly influence heavy metal concentrations. For the exchangeable fraction, clay, grain size and the mineral pyrite are the main factors, whereas for the reducible fraction, TOC is the main factor influencing concentrations ofZn, Pb, Ni, Cu and Cr. For the oxidizable fraction, modelling shows that TOC is the main factor influencing Zn, Ni, Cu, Cr and Co concentrations. The residual fraction concentrations of Zn, Ni, Cr and Co were best predicted by the abundance of sand, with sand content having a negative effect on heavy metal concentrations in this fraction. The statistical techniques in environmental data interpretation are quite useful in cutting down the volume of the data and identifying identical classes which are statistically distinct.