With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first t...With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first time, which improved the solubility of the slag and converted the nutritional elements into such ones which are prone to be absorbed by plants. The effects of process conditions on dissolution rate of titanium were mainly analyzed through the orthogonal experiment. The results showed that the optimum synthesis process conditions of foliar fertilizer from the slag were 360 ℃ for 35 min, the mass ratio of ammonium sulfate and titanium-bearing blast furnace slag was 8:1. Under these conditions more than 80% of iron, titanium, magnesium and part of silicon in titanium-bearing blast furnace slag converted into water-soluble substances and existing in foliar fertilizer. Foliar fertilizer contained nitrogen, sulfur, potassium, iron, titanium, magnesium and silicon, and pH value of foliar fertilizer was 6. Ca-S-Si compound fertilizer mainly contained calcium silicate and calcium sulfate, which existed in the form of citric acid-soluble substance and slightly soluble substance, respectively.展开更多
基金This study was supported by the National Natural Science Foundation of China (No. 50874029) and the National Basic Research Program of China (No.2007CB613504). Thanks are due to X.L. Nan and B.Y. Ma for their assistance in language editing.
文摘With titanium-bearing blast furnace slag, ammonium sulfate, citric acid and potassium carbonate as raw materials to produce foliar fertilizer and Ca-S-Si compound fertilizer by means of heating process for the first time, which improved the solubility of the slag and converted the nutritional elements into such ones which are prone to be absorbed by plants. The effects of process conditions on dissolution rate of titanium were mainly analyzed through the orthogonal experiment. The results showed that the optimum synthesis process conditions of foliar fertilizer from the slag were 360 ℃ for 35 min, the mass ratio of ammonium sulfate and titanium-bearing blast furnace slag was 8:1. Under these conditions more than 80% of iron, titanium, magnesium and part of silicon in titanium-bearing blast furnace slag converted into water-soluble substances and existing in foliar fertilizer. Foliar fertilizer contained nitrogen, sulfur, potassium, iron, titanium, magnesium and silicon, and pH value of foliar fertilizer was 6. Ca-S-Si compound fertilizer mainly contained calcium silicate and calcium sulfate, which existed in the form of citric acid-soluble substance and slightly soluble substance, respectively.
文摘对宣钢12种含钛高炉炉料的化学成分及熔滴性能测试结果进行综合分析,给出宣钢2号高炉(2 500 m3)、3号高炉(2 000 m3)、4号高炉(1 800 m3)不同原料条件下最佳的炉料结构,并对3组炉料结构进行比较。分析认为,2号高炉熔滴性能最好的炉料结构为4号方案,S值最小为322 k Pa·℃,3号高炉熔滴性能最好的炉料结构为5号方案,S值最小为786 k Pa·℃,4号高炉熔滴性能最好的炉料结构为11号方案,S值最小为790 k Pa·℃;3号、4号高炉使用的炉料碱度与2号高炉相比较高,这是造成3号、4号高炉炉料最大压差(Δp_(max))值高的主要原因;2号高炉使用炉料的含铁品位较高,大于57%,且渣中的Mg O质量分数较低,因此炉料在软熔滴落带渣量相对较少,渣的流动性较好,熔滴性能优于3号、4号高炉。