Effects of different lead compounds, PbCl2, Pb(NO3)2 and Pb(OAc)2, on the rice growth and uptake of lead and some microelements by wetland rice were studied. The results showed that the seed germination, rice seedling...Effects of different lead compounds, PbCl2, Pb(NO3)2 and Pb(OAc)2, on the rice growth and uptake of lead and some microelements by wetland rice were studied. The results showed that the seed germination, rice seedling growth, chlorophyl content, grain yield and uptake of Pb, Cu, Zn, Fe and Mn by rice plant were affected by the chemical forms of Pb compounds added in soil to a certain degree. The germination rate and the amount of chlorophyl decreased remarkably with increasing Pb concentration, the root extension was restrained obviously by the presence of Pb, and the effect of PbCl2 was more evident than that of Pb(NO3)2 or Pb(OAc)2. The pot incubation test with yellow brown soil and red soil showed that there was no significant regularity in effect of Pb on grain yield, but the difference in the influence of various Pb compounds on yield was clearer. The effect on the amount of Pb in straw and brown rice was in the sequence of Pb(NO3)2> Pb(OAc)2> PbCl2. In case the content of Pb in brown rice was 0.5 mg/ kg, the relative loading capacities of yellow brown soil for Pb added as PbCl2, Pb(OAc)2 and Pb(NO3)2 were 100, 90 and 60 respectively. Pb uptake by wetland rice was closely related to the chemical species of Pb in soil, but there was no comparability among chemical forms of different Pb compounds in the same soil. The uptake of Cu, Zn, Fe and Mn by wetland rice was markedly affected by the addition of Pb, and different Pb compounds varied in their impacts on the uptake of other metals by different organs of wetland rice, e.g. the concentration of Fe in root increased significantly (r = 0.92), while opposite was true for Fe in brown rice (r =-0.92) due to the application of Pb(OAc), in soil. These results demonstrate that the effect of accompanying anions of Pb on the physiological and biochemical processes of wetland rice was rather complex.展开更多
文摘Effects of different lead compounds, PbCl2, Pb(NO3)2 and Pb(OAc)2, on the rice growth and uptake of lead and some microelements by wetland rice were studied. The results showed that the seed germination, rice seedling growth, chlorophyl content, grain yield and uptake of Pb, Cu, Zn, Fe and Mn by rice plant were affected by the chemical forms of Pb compounds added in soil to a certain degree. The germination rate and the amount of chlorophyl decreased remarkably with increasing Pb concentration, the root extension was restrained obviously by the presence of Pb, and the effect of PbCl2 was more evident than that of Pb(NO3)2 or Pb(OAc)2. The pot incubation test with yellow brown soil and red soil showed that there was no significant regularity in effect of Pb on grain yield, but the difference in the influence of various Pb compounds on yield was clearer. The effect on the amount of Pb in straw and brown rice was in the sequence of Pb(NO3)2> Pb(OAc)2> PbCl2. In case the content of Pb in brown rice was 0.5 mg/ kg, the relative loading capacities of yellow brown soil for Pb added as PbCl2, Pb(OAc)2 and Pb(NO3)2 were 100, 90 and 60 respectively. Pb uptake by wetland rice was closely related to the chemical species of Pb in soil, but there was no comparability among chemical forms of different Pb compounds in the same soil. The uptake of Cu, Zn, Fe and Mn by wetland rice was markedly affected by the addition of Pb, and different Pb compounds varied in their impacts on the uptake of other metals by different organs of wetland rice, e.g. the concentration of Fe in root increased significantly (r = 0.92), while opposite was true for Fe in brown rice (r =-0.92) due to the application of Pb(OAc), in soil. These results demonstrate that the effect of accompanying anions of Pb on the physiological and biochemical processes of wetland rice was rather complex.