An experiment was carried out to investigate the variations in metal uptake and translocation among 19 wetland plant species in small-scale plots of constructed wetland using artificial wastewater containing 2.0 mg L^...An experiment was carried out to investigate the variations in metal uptake and translocation among 19 wetland plant species in small-scale plots of constructed wetland using artificial wastewater containing 2.0 mg L^-1 copper (Cu), 1.0 mg L^-1 chromium (Cr), and 2.0 mg L^-1 nickel (Ni). More than 97% of Cu, Cr, and Ni were removed from the wastewater by the wetland plant species. There were more than ]00-fold differences in the metal accumulation and more than ten-fold differences in the metal concentrations among the 19 plant species. These plants accumulated as high as 8.8% of Cu, 20.5% of Cr, and 14.4% of Ni when they were grown in the wetland soaked with the wastewater. Several plant species were found to be highly capable of accumulating one, two or all the three metals. The results indicated considerable variations in the metal removal abilities through phytoextraction among the 19 wetland plant species. It can be concluded that the selection of appropriate plant species in constructed wetland can be crucial for the improvement of metal removal efficiency of the wetland system.展开更多
Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scan...Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scanning electron microscopy, thermogravimetry and differential scanning calorimetry, etc. The major compositions of pickling sludge are CaF2, CaSO4, Me(OH), (M: Fe, Cr, Ni), and the content of CaF2 is high in the sludge. The melting point of pickling sludge is about 1350℃ and the viscosity is about 0.14 Pa.s at 1450 ℃, which are comparatively lower than those of normal refining slag. After heat treatment, the contents of sulfur and fluorine in the pickling sludge were reduced, confirming the thermal decomposition of sulfate in the sludge. Fluorine in the sludge is reduced by the gaseous SiF4 and A1F3 generated through the reactions of CaF2 with SiO2 and Al2O3. The preliminary results from the reduction test indicate that the sulfur content in the steel is not affected by the presence of sulfur in the sludge. The recovery of nickel is about 40%, and the chromium content changes marginally due to the protective atmosphere under the reduction condition of chromic oxide. The pickling sludge is a potential auxiliary material for the production of stainless steel.展开更多
The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and elect...The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.展开更多
In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys w...In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied with an X-ray diffractometer (XRD) and a high resolution transmission electronic microscope (HRTEM). An investigation on the thermal stability of the as-spun alloys was carried out with a differential scanning calorimeter (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results demonstrate that the substitution of Co for Ni does not alter the major phase of Mg2Ni but results in the formation of secondary phase MgCo2. No amorphous phase is detected in the as-spun Co-free alloy,but a certain amount of amorphous phase is clearly found in the as-spun Co-containing alloys. The substitution of Co for Ni exerts a slight influence on the hydriding kinetics of the as-spun alloy. However,it dramatically enhances the dehydriding kinetics of the as-cast and spun alloys. As Co content (x) increases from 0 to 0.4,the hydrogen desorption capacity increases from 0.19% to 1.39% (mass fraction) in 20 min for the as-cast alloy,and from 0.89% to 2.18% (mass fraction) for the as-spun alloy (30 m/s).展开更多
基金Project supported by the Postgraduate Research and Innovation Project of the Universities in Jiangsu Province, China(No. CX08S 018Z)the Jiangsu Provincial Natural Science Foundation of China (No. BK2008144)the Key Projectfor Agricultural Science and Technology of Changzhou, Jiangsu Province, China (No. CE2008211)
文摘An experiment was carried out to investigate the variations in metal uptake and translocation among 19 wetland plant species in small-scale plots of constructed wetland using artificial wastewater containing 2.0 mg L^-1 copper (Cu), 1.0 mg L^-1 chromium (Cr), and 2.0 mg L^-1 nickel (Ni). More than 97% of Cu, Cr, and Ni were removed from the wastewater by the wetland plant species. There were more than ]00-fold differences in the metal accumulation and more than ten-fold differences in the metal concentrations among the 19 plant species. These plants accumulated as high as 8.8% of Cu, 20.5% of Cr, and 14.4% of Ni when they were grown in the wetland soaked with the wastewater. Several plant species were found to be highly capable of accumulating one, two or all the three metals. The results indicated considerable variations in the metal removal abilities through phytoextraction among the 19 wetland plant species. It can be concluded that the selection of appropriate plant species in constructed wetland can be crucial for the improvement of metal removal efficiency of the wetland system.
基金Project(2010JM7010)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject supported by the Technology Foundation for Selected Overseas Chinese Scholars,Department of Human Resources and Social Security of Shaanxi Province,China
文摘Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scanning electron microscopy, thermogravimetry and differential scanning calorimetry, etc. The major compositions of pickling sludge are CaF2, CaSO4, Me(OH), (M: Fe, Cr, Ni), and the content of CaF2 is high in the sludge. The melting point of pickling sludge is about 1350℃ and the viscosity is about 0.14 Pa.s at 1450 ℃, which are comparatively lower than those of normal refining slag. After heat treatment, the contents of sulfur and fluorine in the pickling sludge were reduced, confirming the thermal decomposition of sulfate in the sludge. Fluorine in the sludge is reduced by the gaseous SiF4 and A1F3 generated through the reactions of CaF2 with SiO2 and Al2O3. The preliminary results from the reduction test indicate that the sulfur content in the steel is not affected by the presence of sulfur in the sludge. The recovery of nickel is about 40%, and the chromium content changes marginally due to the protective atmosphere under the reduction condition of chromic oxide. The pickling sludge is a potential auxiliary material for the production of stainless steel.
基金Projects(51371094,51161015)supported by the National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘The La-Mg-Ni-based A2B7-type La0.5Mg0.2Ni3.3Co0.2Six (x=0-0.2) electrode alloys were prepared by casting and annealing. The influences of the additional silicon and the annealing treatment on the structure and electrochemical performances of the alloys were investigated systemically. Both of the analyses of XRD and SEM reveal that the as-cast and annealed alloys are of a multiphase structure, involving two main phases (La, Mg)2Ni7 and LaNi5 as well as one minor phase LaNi3. The addition of Si and annealing treatment bring on an evident change in the phase abundances and cell parameters of (La, Mg)2Ni7 and LaNi5 phase for the alloy without altering its phase structure. The phase abundances decrease from 74.3% (x=0) to 57.8% (x=0.2) for the (La, Mg)2Ni7 phase, and those of LaNi5 phase increase from 20.2% (x^0) to 37.3% (x=0.2). As for the electrochemical measurements, adding Si and performing annealing treatment have engendered obvious impacts. The cycle stability of the alloys is improved dramatically, being enhanced from 80.3% to 93.7% for the as-annealed (950 ℃) alloys with Si content increasing from 0 to 0.2. However, the discharge capacity is reduced by adding Si, from 399.4 to 345.3 mA.h/g as the Si content increases from 0 to 0.2. Furthermore, such addition makes the electrochemical kinetic properties of the alloy electrodes first increase and then decrease. Also, it is found that the overall electrochemical properties of the alloys first augment and then fall with the annealing temperature rising.
基金Project(2006AA05Z132) supported by the National High-tech Research and Development Program of ChinaProjects(50871050, 50961009) supported by the National Natural Science Foundation of China+1 种基金Project(2010ZD05) supported by the Natural Science Foundation of Inner Mongolia, ChinaProject(NJzy08071) supported by the High Education Science Research Program of Inner Mongolia, China
文摘In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied with an X-ray diffractometer (XRD) and a high resolution transmission electronic microscope (HRTEM). An investigation on the thermal stability of the as-spun alloys was carried out with a differential scanning calorimeter (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results demonstrate that the substitution of Co for Ni does not alter the major phase of Mg2Ni but results in the formation of secondary phase MgCo2. No amorphous phase is detected in the as-spun Co-free alloy,but a certain amount of amorphous phase is clearly found in the as-spun Co-containing alloys. The substitution of Co for Ni exerts a slight influence on the hydriding kinetics of the as-spun alloy. However,it dramatically enhances the dehydriding kinetics of the as-cast and spun alloys. As Co content (x) increases from 0 to 0.4,the hydrogen desorption capacity increases from 0.19% to 1.39% (mass fraction) in 20 min for the as-cast alloy,and from 0.89% to 2.18% (mass fraction) for the as-spun alloy (30 m/s).