Ni-Al-CO3 LDHs/γ-Al2O3 have been prepared using an in-situ synthesis technique. NH3·H2O was chosen as activation agent of Al on the γ-Al2O3 surface as well as precipitant. Ni-Al-CO3 LDHs/γ-Al2O3 was synthesize...Ni-Al-CO3 LDHs/γ-Al2O3 have been prepared using an in-situ synthesis technique. NH3·H2O was chosen as activation agent of Al on the γ-Al2O3 surface as well as precipitant. Ni-Al-CO3 LDHs/γ-Al2O3 was synthesized by controlling the reaction conditions such as temperature, concentration of Ni2+ and initial pH. The crystalline structure, chemical composition and porous structure were characterized by means of XRD, FT-IR, TG-DTA, 27Al MAS-NMR and N2 adsorption-desorption. The resulting sample of Ni-Al-CO3 LDHs/γ-Al2O3 possesses higher specific area and narrower pore distribution, in which Ni-Al-CO3 LDHs are located on the surface of γ-Al2O3 and share the same Al-O bonds with the γ-Al2O3 lattice. Finally a possible structural model was proposed to account for the porous characters of Ni-Al-CO3 LDHs/γ-Al2O3.展开更多
文摘Ni-Al-CO3 LDHs/γ-Al2O3 have been prepared using an in-situ synthesis technique. NH3·H2O was chosen as activation agent of Al on the γ-Al2O3 surface as well as precipitant. Ni-Al-CO3 LDHs/γ-Al2O3 was synthesized by controlling the reaction conditions such as temperature, concentration of Ni2+ and initial pH. The crystalline structure, chemical composition and porous structure were characterized by means of XRD, FT-IR, TG-DTA, 27Al MAS-NMR and N2 adsorption-desorption. The resulting sample of Ni-Al-CO3 LDHs/γ-Al2O3 possesses higher specific area and narrower pore distribution, in which Ni-Al-CO3 LDHs are located on the surface of γ-Al2O3 and share the same Al-O bonds with the γ-Al2O3 lattice. Finally a possible structural model was proposed to account for the porous characters of Ni-Al-CO3 LDHs/γ-Al2O3.