Cymbal hydrophones have small volume and high sensitivity, but their reception is not stable enough, and their reception is in too narrow a frequency band. In order to overcome these inadequacies, the structure of the...Cymbal hydrophones have small volume and high sensitivity, but their reception is not stable enough, and their reception is in too narrow a frequency band. In order to overcome these inadequacies, the structure of the cymbal hydrophone was improved. The single ceramic piezoelectric element was replaced with a double one, the radius of the ceramic piezoelectric element was reduced, and a parallel circuit was added. A static analysis of this new structure was developed, and then simulations were made of both the traditional and new hydrophone structure using finite element software. Tests were then conducted in a tank. The results showed that the improved hydrophone has reception in a wider frequency band, reception performance is stable within this frequency band, and sensitivity is still high.展开更多
In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is...In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydro- phones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the cor- reemess of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.展开更多
The influence of array element’s consistency on the hydrophone array’s signal-to-noise ratio (SNR) is studied. The consistency of array elements means the outputs of all the array’s elements are the same, that is t...The influence of array element’s consistency on the hydrophone array’s signal-to-noise ratio (SNR) is studied. The consistency of array elements means the outputs of all the array’s elements are the same, that is to say, the outputs have the same phase and amplitude when their inputs are the same. The relationship between the SNR and the correlation coefficient of signal and the relationship between the SNR and the correlation coefficient of noise are given. Hydrophone array’s gain with the output of elements’ inconsistent phase and amplitude is analyzed theoretically. When the signal is single-frequency, the gain expression of two-elements array is deduced. Then the gain is calculated when the phase difference is 10° and the amplitude difference is 3 dB. The theoretical analysis is verified through simulation. The simulation results show the variation rule of array’s SNR when the consistency changes: the array SNR gain is greatly affected by the consistency of the elements’ output and the gain decreases as the consistency decreases and the gain may be negative when the amplitude response becomes worse.展开更多
Some optical fiber hydrophones, such as PGC Mach-Zehnder Interferometer, have a birefringence of single mode optical fibers which induce signal fading. Especially, if two optical beams from the optical arms are orthog...Some optical fiber hydrophones, such as PGC Mach-Zehnder Interferometer, have a birefringence of single mode optical fibers which induce signal fading. Especially, if two optical beams from the optical arms are orthogonal, the interferomic signal can’t be detected at all. Here a new method is introduced. This is to translate the detected phase difference into a linearly polarized angle, then detect it, so that polarization inducing signal fading will be avoided. In theory, this problem is solved. Furthermore, the effect on measurement results from optical source fluctuation becomes little when using the polarization technique.展开更多
In this work,acoustic vector characteristics of near fields scattered by an underwater finite cylindrical baffle are investigated theoretically and experimentally.The analytic expressions for the scattered pressure an...In this work,acoustic vector characteristics of near fields scattered by an underwater finite cylindrical baffle are investigated theoretically and experimentally.The analytic expressions for the scattered pressure and particle velocity are derived using the elastic thin shell theory.Calculations are presented for the scattered near fields of the pressure,the particle velocity and the intensity.It is found that the pressure and the particle velocity fields near the surface of the cylindrical baffle are characterized by complex interference structure,particle velocity directions and the source bearings are not consistent.The phase difference between the pressure and the particle velocity is not zero and the intensity vector does not reflect the sound bearings.It can be noted that the distortions of the fields will make the original vector signal processing method based on the free space assumption be no longer applicable in the presence of the cylindrical baffle.These results can serve as a basis of the application for the acoustic vector sensor on board.展开更多
We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), off...We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.展开更多
One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of intere...One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices,which cost more in computation.A one-step procedure based on measuring of the normal component of the particle velocity is described,including the mathematical formulation.The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure.These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array.The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.展开更多
文摘Cymbal hydrophones have small volume and high sensitivity, but their reception is not stable enough, and their reception is in too narrow a frequency band. In order to overcome these inadequacies, the structure of the cymbal hydrophone was improved. The single ceramic piezoelectric element was replaced with a double one, the radius of the ceramic piezoelectric element was reduced, and a parallel circuit was added. A static analysis of this new structure was developed, and then simulations were made of both the traditional and new hydrophone structure using finite element software. Tests were then conducted in a tank. The results showed that the improved hydrophone has reception in a wider frequency band, reception performance is stable within this frequency band, and sensitivity is still high.
基金supported by Public Science and Technology Research Funds Projects of Ocean(201405036-4)the National Natural Science Foundation of China(Grant Nos.11404406,51179034,41072176 and 11204109)+1 种基金Defense Technology Research(JSJC2013604C012)Postdoctoral Science Foundation of China(Grant No.2013 M531015)
文摘In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydro- phones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the cor- reemess of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.
基金Major State Basic Research Development Program of China(No.2016YFC0101900)Applied Basic Research Project of Shanxi Province(Nos.201601D011035,201701D121067)
文摘The influence of array element’s consistency on the hydrophone array’s signal-to-noise ratio (SNR) is studied. The consistency of array elements means the outputs of all the array’s elements are the same, that is to say, the outputs have the same phase and amplitude when their inputs are the same. The relationship between the SNR and the correlation coefficient of signal and the relationship between the SNR and the correlation coefficient of noise are given. Hydrophone array’s gain with the output of elements’ inconsistent phase and amplitude is analyzed theoretically. When the signal is single-frequency, the gain expression of two-elements array is deduced. Then the gain is calculated when the phase difference is 10° and the amplitude difference is 3 dB. The theoretical analysis is verified through simulation. The simulation results show the variation rule of array’s SNR when the consistency changes: the array SNR gain is greatly affected by the consistency of the elements’ output and the gain decreases as the consistency decreases and the gain may be negative when the amplitude response becomes worse.
文摘Some optical fiber hydrophones, such as PGC Mach-Zehnder Interferometer, have a birefringence of single mode optical fibers which induce signal fading. Especially, if two optical beams from the optical arms are orthogonal, the interferomic signal can’t be detected at all. Here a new method is introduced. This is to translate the detected phase difference into a linearly polarized angle, then detect it, so that polarization inducing signal fading will be avoided. In theory, this problem is solved. Furthermore, the effect on measurement results from optical source fluctuation becomes little when using the polarization technique.
基金supported by the Special Foundation for the State Major Basic Research Program of China (Grant No. 40827003)
文摘In this work,acoustic vector characteristics of near fields scattered by an underwater finite cylindrical baffle are investigated theoretically and experimentally.The analytic expressions for the scattered pressure and particle velocity are derived using the elastic thin shell theory.Calculations are presented for the scattered near fields of the pressure,the particle velocity and the intensity.It is found that the pressure and the particle velocity fields near the surface of the cylindrical baffle are characterized by complex interference structure,particle velocity directions and the source bearings are not consistent.The phase difference between the pressure and the particle velocity is not zero and the intensity vector does not reflect the sound bearings.It can be noted that the distortions of the fields will make the original vector signal processing method based on the free space assumption be no longer applicable in the presence of the cylindrical baffle.These results can serve as a basis of the application for the acoustic vector sensor on board.
文摘We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.
基金supported by the National Natural Science Foundation of China(Grant No.11204049)the National Defence Research Funds (Grant No.7131107 and 51310040202)the Fundamental Research Funds For the Central Universities(Grant No.HEUCFR1013 and HEUCF120504)
文摘One-step patch near-field acoustical holography(PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field.The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices,which cost more in computation.A one-step procedure based on measuring of the normal component of the particle velocity is described,including the mathematical formulation.The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure.These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array.The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.