Lepidoptera evolved tympanic ears in response to echolocating bats. Comparative studies have shown that moth ears evolved many times independently from chordotonal organs. With only 1 to 4 receptor cells, they are one...Lepidoptera evolved tympanic ears in response to echolocating bats. Comparative studies have shown that moth ears evolved many times independently from chordotonal organs. With only 1 to 4 receptor cells, they are one of the simplest hearing organs. The small number of receptors does not imply simplicity, neither in behavior nor in the neural circuit. Behaviorally, the response to ultrasound is far from being a simple reflex. Moths' escape behavior is modulated by a variety of cues, especially pheromones, which can alter the auditory response. Neurally the receptor cell(s) diverges onto many interneurons, enabling pa- rallel processing and feature extraction. Ascending interneurons and sound-sensitive brain neurons innervate a neuropil in the ventrolateral protocerebrum. Further, recent electrophysiological data provides the first glimpses into how the acoustic response is modulated as well as how ultrasound influences the other senses. So far, the auditory pathway has been studied in noctuids. The findings agree well with common computational principles found in other insects. However, moth ears also show unique mechanical and neural adaptation. Here, we first describe the variety of moths' auditory behavior, especially the co-option of ul- trasonic signals for intraspecific communication. Second, we describe the current knowledge of the neural pathway gained from noctuid moths. Finally, we argue that Galleriinae which show negative and positive phonotaxis, are an interesting model species for future electrophysiological studies of the auditory pathway and multimodal sensory integration, and so are ideally suited for the study of the evolution of behavioral mechanisms given a few receptors.展开更多
Bone morphogenetic proteins(BMPs)are the largest subfamily of the transforming growth factor-βsuperfamily,and they play important roles in the development of numerous organs,including the inner ear.The inner ear is a...Bone morphogenetic proteins(BMPs)are the largest subfamily of the transforming growth factor-βsuperfamily,and they play important roles in the development of numerous organs,including the inner ear.The inner ear is a relatively small organ but has a highly complex structure and is involved in both hearing and balance.Here,we discuss BMPs and BMP signaling pathways and then focus on the role of BMP signal pathway regulation in the development of the inner ear and the implications this has for the treatment of human hearing loss and balance dysfunction.展开更多
In the acoustic world, no sounds occur entirely in isolation; they always reach the ears in combination with other sounds. How any given sound is discriminated and perceived as an independent auditory object is a chal...In the acoustic world, no sounds occur entirely in isolation; they always reach the ears in combination with other sounds. How any given sound is discriminated and perceived as an independent auditory object is a challenging question in neu- roscience. Although our knowledge of neural processing in the auditory pathway has expanded over the years, no good theory ex- ists to explain how perception of auditory objects is achieved. A growing body of evidence suggests that the selectivity of neurons in the auditory forebrain is under dynamic modulation, and this plasticity may contribute to auditory object perception. We propose that stimulus-specific adaptation in the auditory forebrain of the songbird (and perhaps in other systems) may play an important role in modulating sensitivity in a way that aids discrimination, and thus can potentially contribute to auditory object perception.展开更多
文摘Lepidoptera evolved tympanic ears in response to echolocating bats. Comparative studies have shown that moth ears evolved many times independently from chordotonal organs. With only 1 to 4 receptor cells, they are one of the simplest hearing organs. The small number of receptors does not imply simplicity, neither in behavior nor in the neural circuit. Behaviorally, the response to ultrasound is far from being a simple reflex. Moths' escape behavior is modulated by a variety of cues, especially pheromones, which can alter the auditory response. Neurally the receptor cell(s) diverges onto many interneurons, enabling pa- rallel processing and feature extraction. Ascending interneurons and sound-sensitive brain neurons innervate a neuropil in the ventrolateral protocerebrum. Further, recent electrophysiological data provides the first glimpses into how the acoustic response is modulated as well as how ultrasound influences the other senses. So far, the auditory pathway has been studied in noctuids. The findings agree well with common computational principles found in other insects. However, moth ears also show unique mechanical and neural adaptation. Here, we first describe the variety of moths' auditory behavior, especially the co-option of ul- trasonic signals for intraspecific communication. Second, we describe the current knowledge of the neural pathway gained from noctuid moths. Finally, we argue that Galleriinae which show negative and positive phonotaxis, are an interesting model species for future electrophysiological studies of the auditory pathway and multimodal sensory integration, and so are ideally suited for the study of the evolution of behavioral mechanisms given a few receptors.
基金Project Project supported by the National Key Technologies R&D Program of China(Nos.2017YFA0103900 and 2016YFC0905200)the National Natural Science Foundation of China(Nos.81620108005,8177040802,and 81622013)the Shanghaigng Talents Plan(No.18PJ1401700),China
文摘Bone morphogenetic proteins(BMPs)are the largest subfamily of the transforming growth factor-βsuperfamily,and they play important roles in the development of numerous organs,including the inner ear.The inner ear is a relatively small organ but has a highly complex structure and is involved in both hearing and balance.Here,we discuss BMPs and BMP signaling pathways and then focus on the role of BMP signal pathway regulation in the development of the inner ear and the implications this has for the treatment of human hearing loss and balance dysfunction.
文摘In the acoustic world, no sounds occur entirely in isolation; they always reach the ears in combination with other sounds. How any given sound is discriminated and perceived as an independent auditory object is a challenging question in neu- roscience. Although our knowledge of neural processing in the auditory pathway has expanded over the years, no good theory ex- ists to explain how perception of auditory objects is achieved. A growing body of evidence suggests that the selectivity of neurons in the auditory forebrain is under dynamic modulation, and this plasticity may contribute to auditory object perception. We propose that stimulus-specific adaptation in the auditory forebrain of the songbird (and perhaps in other systems) may play an important role in modulating sensitivity in a way that aids discrimination, and thus can potentially contribute to auditory object perception.