While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A c...While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A critical reason for such bad recommendations lies in the intrinsic assumption that recommend- ed users and items are independent and identically distributed (liD) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-liD nature and characteristics of recommendation are discussed, followed by the non-liD theoretical framework in order to build a deep and comprehensive understanding of the in- trinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-liD recommendation research triggers the paradigm shift from lid to non-liD recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.展开更多
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dyn...Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.展开更多
文摘While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and ser- vices. A critical reason for such bad recommendations lies in the intrinsic assumption that recommend- ed users and items are independent and identically distributed (liD) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-liD nature and characteristics of recommendation are discussed, followed by the non-liD theoretical framework in order to build a deep and comprehensive understanding of the in- trinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-liD recommendation research triggers the paradigm shift from lid to non-liD recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.
基金sponsored by Natural Science Foundation of China (Grant No. 51269012)Major Projects of Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. ZD0602)+2 种基金part of National Project 973 "Wenchuan Earthquake Mountain Hazards Formation Mechanism and Risk Control" (Grant No. 2008CB425800)funded by "New Century Excellent Talents" of University of Ministry of Education of China (Grant No. NCET-11-1016)China Scholarship Council
文摘Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.