针对二维矩形条带装箱问题提出了一种启发式布局算法,即底部左齐择优匹配算法(lowest-level left a lignbest fit,简称LLABF).LLABF算法遵循最佳匹配优先原则,该原则综合考虑完全匹配优先、宽度匹配优先、高度匹配优先、组合宽度匹配优...针对二维矩形条带装箱问题提出了一种启发式布局算法,即底部左齐择优匹配算法(lowest-level left a lignbest fit,简称LLABF).LLABF算法遵循最佳匹配优先原则,该原则综合考虑完全匹配优先、宽度匹配优先、高度匹配优先、组合宽度匹配优先及可装入优先等启发式规则.与BL(bottom-left),IBL(improved-bottom-left)与BLF(bottom-left-fill)等启发算法不同的是,LLABF能够在矩形装入过程中自动选择与可装区域匹配的下一个待装矩形.计算结果表明,LLABF结合遗传算法(genetic algorithm,简称GA)解决二维条带装箱问题更加有效.展开更多
An optimal layout or three-dimensional spatial distribution of stopes guarantees the maximum profitability over life span of an underground mining operation.Thus,stope optimization is one of the key areas in undergrou...An optimal layout or three-dimensional spatial distribution of stopes guarantees the maximum profitability over life span of an underground mining operation.Thus,stope optimization is one of the key areas in underground mine planning practice.However,the computational complexity in developing an optimal stope layout has been a reason for limited availability of the algorithms offering solution to this problem.This article shares a new and efficient heuristic algorithm that considers a three-dimensional ore body model as an input,maximizes the economic value,and satisfies the physical mining and geotechnical constraints for generating an optimal stope layout.An implementation at a copper deposit demonstrates the applicability and robustness of the algorithm.A parallel processing based modification improving the performance of the original algorithm in terms of enormous computational time saving is also presented.展开更多
文摘针对二维矩形条带装箱问题提出了一种启发式布局算法,即底部左齐择优匹配算法(lowest-level left a lignbest fit,简称LLABF).LLABF算法遵循最佳匹配优先原则,该原则综合考虑完全匹配优先、宽度匹配优先、高度匹配优先、组合宽度匹配优先及可装入优先等启发式规则.与BL(bottom-left),IBL(improved-bottom-left)与BLF(bottom-left-fill)等启发算法不同的是,LLABF能够在矩形装入过程中自动选择与可装区域匹配的下一个待装矩形.计算结果表明,LLABF结合遗传算法(genetic algorithm,简称GA)解决二维条带装箱问题更加有效.
文摘An optimal layout or three-dimensional spatial distribution of stopes guarantees the maximum profitability over life span of an underground mining operation.Thus,stope optimization is one of the key areas in underground mine planning practice.However,the computational complexity in developing an optimal stope layout has been a reason for limited availability of the algorithms offering solution to this problem.This article shares a new and efficient heuristic algorithm that considers a three-dimensional ore body model as an input,maximizes the economic value,and satisfies the physical mining and geotechnical constraints for generating an optimal stope layout.An implementation at a copper deposit demonstrates the applicability and robustness of the algorithm.A parallel processing based modification improving the performance of the original algorithm in terms of enormous computational time saving is also presented.