期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多例学习的Web图像聚类
被引量:
6
1
作者
路晶
马少平
《计算机研究与发展》
EI
CSCD
北大核心
2009年第9期1462-1470,共9页
在图像分类和自动标注系统中,多例学习(MIL)是研究的热点.目前MIL中的算法多为监督学习方法.针对非监督学习,在基于EM算法和启发式迭代优化算法的框架下,提出了6种多例聚类算法,并通过它们对来自于真实Web环境下的图像进行聚类以分析用...
在图像分类和自动标注系统中,多例学习(MIL)是研究的热点.目前MIL中的算法多为监督学习方法.针对非监督学习,在基于EM算法和启发式迭代优化算法的框架下,提出了6种多例聚类算法,并通过它们对来自于真实Web环境下的图像进行聚类以分析用户的搜索兴趣.由于一幅图像含有若干个区域,每个区域可被看为一个样例,属于同一个图像的区域则组成一个包.因此如何理解图像语义内容的问题即转化为多例学习.在多例学习的经典数据集MUSK数据和来自于Web图像集上的比较实验表明,提出的多例聚类算法具有优良的聚类性能.
展开更多
关键词
非监督学习
多例学习
聚类
算法
EM
算法
启发式迭代优化算法
下载PDF
职称材料
题名
基于多例学习的Web图像聚类
被引量:
6
1
作者
路晶
马少平
机构
智能技术与系统国家重点实验室
清华大学计算机科学与技术系
清华信息科学与技术国家实验室
出处
《计算机研究与发展》
EI
CSCD
北大核心
2009年第9期1462-1470,共9页
基金
国家"九七三"重点基础研究发展计划基金项目(2004CB318108)
国家自然科学基金项目(60621062
+2 种基金
60503064
60736044)
国家"八六三"高技术研究发展计划基金项目(2006AA01Z141)~~
文摘
在图像分类和自动标注系统中,多例学习(MIL)是研究的热点.目前MIL中的算法多为监督学习方法.针对非监督学习,在基于EM算法和启发式迭代优化算法的框架下,提出了6种多例聚类算法,并通过它们对来自于真实Web环境下的图像进行聚类以分析用户的搜索兴趣.由于一幅图像含有若干个区域,每个区域可被看为一个样例,属于同一个图像的区域则组成一个包.因此如何理解图像语义内容的问题即转化为多例学习.在多例学习的经典数据集MUSK数据和来自于Web图像集上的比较实验表明,提出的多例聚类算法具有优良的聚类性能.
关键词
非监督学习
多例学习
聚类
算法
EM
算法
启发式迭代优化算法
Keywords
unsupervised learning
multiple-instance learning
clustering
expectation maximization algorithm
iterative heuristic optimization
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多例学习的Web图像聚类
路晶
马少平
《计算机研究与发展》
EI
CSCD
北大核心
2009
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部