This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order t...This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order to reduce power dissipation,power on/off states and isolation logic are introduced into the SR SRAM and an LPSR SRAM is constructed. The optimized LPSR SRAM64K × 32 is used in SoC and the testing method of the LPSR SRAM64K × 32 is also discussed. The SoC design is successfully implemented in the Chartered 90nm CMOS process. The SoC chip occupies 5. 6mm× 5. 6ram of die area and the power dissipation is 1997mW. The test results indicate that LPSR SRAM64K ×32 obtains 17. 301% power savings and the yield of the LPSR SRAM64K × 32s per wafer is improved by 13. 255%.展开更多
文摘This paper presents an optimized SRAM that is repairable and dissipates less power. To improve the yield of SRAMs per wafer,redundancy logic and an E-FUSE box are added to the SRAM and an SR SRAM is set up. In order to reduce power dissipation,power on/off states and isolation logic are introduced into the SR SRAM and an LPSR SRAM is constructed. The optimized LPSR SRAM64K × 32 is used in SoC and the testing method of the LPSR SRAM64K × 32 is also discussed. The SoC design is successfully implemented in the Chartered 90nm CMOS process. The SoC chip occupies 5. 6mm× 5. 6ram of die area and the power dissipation is 1997mW. The test results indicate that LPSR SRAM64K ×32 obtains 17. 301% power savings and the yield of the LPSR SRAM64K × 32s per wafer is improved by 13. 255%.