This paper analyzes the compound attractor structure of a new three-dimensional autonomous chaotic system. First, it is found that there exist five equilibria in the chaotic system, and the stabilities of these equili...This paper analyzes the compound attractor structure of a new three-dimensional autonomous chaotic system. First, it is found that there exist five equilibria in the chaotic system, and the stabilities of these equilibria are discussed under a constant scalar control input parameter m. Secondly, the trajectories of the attractors on a y-z plane are examined, the reasons why these trajectories can exist or disappear are also described. Finally, the forming procedure of the different scrolls chaotic attractor is explored by computer simulations when the parameter m is varied. It is shown that the new chaotic attractor has a compound structure, it can evolve to other three-dimensional autonomous chaotic systems. The results of theoretical analysis and simulation are helpful for better understanding of other similar chaotic systems.展开更多
The intermolecular interaction determines the photophysical properties of the organic aggregates,which are critical to the performance of organic photovoltaics.Here,excitonic coupling,an important intermolecular inter...The intermolecular interaction determines the photophysical properties of the organic aggregates,which are critical to the performance of organic photovoltaics.Here,excitonic coupling,an important intermolecular interaction in organic aggregates,between theπ-stacking graphene quantum dots is studied by using transient absorption spectroscopy.We find that the spectral evolution of the ground state bleach arises from the dynamic variation of the excitonic coupling in the excitedπ-stacks.According to the spectral simulations,we demonstrate that the kinetics of the vibronic peak can be exploited as a probe to measure the dynamics of excitonic coupling in the excitedπ-stacks.展开更多
文摘This paper analyzes the compound attractor structure of a new three-dimensional autonomous chaotic system. First, it is found that there exist five equilibria in the chaotic system, and the stabilities of these equilibria are discussed under a constant scalar control input parameter m. Secondly, the trajectories of the attractors on a y-z plane are examined, the reasons why these trajectories can exist or disappear are also described. Finally, the forming procedure of the different scrolls chaotic attractor is explored by computer simulations when the parameter m is varied. It is shown that the new chaotic attractor has a compound structure, it can evolve to other three-dimensional autonomous chaotic systems. The results of theoretical analysis and simulation are helpful for better understanding of other similar chaotic systems.
基金supported by the National Natural Science Foundation of China (No.22175145 and No.21771155)
文摘The intermolecular interaction determines the photophysical properties of the organic aggregates,which are critical to the performance of organic photovoltaics.Here,excitonic coupling,an important intermolecular interaction in organic aggregates,between theπ-stacking graphene quantum dots is studied by using transient absorption spectroscopy.We find that the spectral evolution of the ground state bleach arises from the dynamic variation of the excitonic coupling in the excitedπ-stacks.According to the spectral simulations,we demonstrate that the kinetics of the vibronic peak can be exploited as a probe to measure the dynamics of excitonic coupling in the excitedπ-stacks.