Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial...Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.展开更多
In this work we investigated the effect of nitric acid concentration on the pore structure,surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphori...In this work we investigated the effect of nitric acid concentration on the pore structure,surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphoric acid and steam as activating agents.Chemicals and textural characterization show that the increase of HNO3concentration increases considerably the total acidic groups but decreases specific surface area and pore volume.The study of adsorption in aqueous solutions of two organics,phenol and methylene blue,on raw and oxidized activated carbon indicates that the treatment of mixed activated carbon with different concentrations of nitric acid improves the adsorbent capacity for methylene blue at HNO3concentrations less or equal to 2 mol·L 1,while it has a negative effect on phenol adsorption.展开更多
Adsorption capacity of activated carbon prepared from spent tea leaves (STL-AC) for the removal of aspirin from aqueous solution was investigated in this study. Preliminary studies have shown that treatment with pho...Adsorption capacity of activated carbon prepared from spent tea leaves (STL-AC) for the removal of aspirin from aqueous solution was investigated in this study. Preliminary studies have shown that treatment with phosphoric acid (H3PO4) increased removal efficiency of STL-AC. Characterizations on STL-AC revealed excellent textural properties (1200 m2.g-1, 51% mesoporosity), as well as distinctive surface chemistry (1.08 mmol.g-1 and 0.54 mmol.g-1 for acidic and basic oxygenated groups, pHpzc = 2.02). Maximum removal efficiency of aspirin observed was 94.28% after 60 rain when the initial concentration was 100 mg.L-1, 0.5 g of adsorbent used, pH 3 and at a temperature of 30 ℃. The adsorption data were well fitted to the Freundlich isotherm model and obeyed the pseudo-second order kinetics model. The adsorption of aspirin onto STL-AC was exothermic in nature (△H = - 13.808 kJ.mol-1) and had a negative entropy change, △S (-41.444 J.mol-1). A negative Gibbs free energy, △G was obtained indicating feasibility and spontaneity of the adsorption process. The adsorp- tion capacity of △C-STL (178.57 mg.g-1) is considerably high compared to most adsorbents synthesized from various sources, due to the well-defined textural properties coupled with surface chemistry of STL-AC which fa- vors aspirin adsorption. The results demonstrate the potential of STL-AC as aspirin adsorbent.展开更多
Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsor...Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsorbent synthesized from natural condensed tannin. The novel adsorbent performs in aqueous solutions as a weak base with valid basic groups of 1.2mmol·g-1 tannin gel particles and therefore results in the elevation of pH value of aqueous solutions. Even when initial pH is 3.6, final pH at equilibrium can climb up to 6.5 that is above the pH value for Pb(OH)2 precipitation formation and then lead can be removed from wastewater by this so-called surface precipitation. The adsorption isotherm can be expressed by the Langmuir equation and the maximum capacity for adsorption of Pb is up to 92 mg·g-1 (based on dry adsorbent) when initial pH value is 3.6. Hence, the adsorbent does offer favorable properties in lead removal with respect to its high adsorption capacity at low initial pH value, which is advantageous to lead removal from acidic wastewater. A model is put forward to describe the individual adsorption phenomenon of the tannin gel adsorbent.展开更多
The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image v...The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.展开更多
Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic str...Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-CaN4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-CaN4/SnS2 heterostructure is a promising g-CaN4 based water splitting photocatalyst with good performance.展开更多
In the present work, the adsorption of sulfate and fluoride by two oxisols was studied, and during the adsorption OH- released from soils were measured and the change in surface charge carried by one of the soils afte...In the present work, the adsorption of sulfate and fluoride by two oxisols was studied, and during the adsorption OH- released from soils were measured and the change in surface charge carried by one of the soils after the adsorption of fluoride was examined. The results show that the adsorption of sulfate by oxisols and the release of OH- from oxisols both increased with the increase of sulfate added at a constant pH, but decreased when pH became higher gradually. The adsorption and release both decreased markedly after removal of iron oxide. The ratio of OH- to SO42- for Fe-removed soils decreased to 15-34% of the original soils. These results suggest that iron oxide was the chief carrier of hydroxyl groups capable of ligand exchange with sulfate in oxisols.Compared with sulfate, however, the amount of fluoride adsorbed, OH- released during the adsorption of fluoride and the ratio of OH- to F- were much larger. The effect of iron oxide on the adsorption of fluoride by oxisols was smaller than that on the adsorption of sulfate. The ratios of OH- to F- for an oxisol from Brazil were 0.62 and 0.48 respectively before and after removal of free iron oxides. This implied that iron oxide only provided a small amount of exchangeable hydroxyl groups capable of ligand exchange with fluoride in oxisol. The research results indicate that among the factors inducing the changes in some properties of oxisols after adsorption of fluoride, the role became less important in the sequence of the release of OH-> the increase of negative charge > the decrease of positive charge.展开更多
In this paper, adsorption and regeneration characteristics of multi-walled carbon nanotubes (MWNTs) used as adsorbent were investigated for the removal of 1,3-beuzenediol (BDO) from water by the supercritieal wat...In this paper, adsorption and regeneration characteristics of multi-walled carbon nanotubes (MWNTs) used as adsorbent were investigated for the removal of 1,3-beuzenediol (BDO) from water by the supercritieal water (SCW) technique. FFIR, XPS, SEM and dispersion stability tests were used to characterize the structure and surface morphology of CNTs. The results showed that CNTs surfaces were slightly activated and strongly etched in supercritieal water system. The adsorption capacity of SCW-treated CNTs was higher than that of raw CNTs. The adsorbed amounts for treated CNTs and raw CNTs samples at the same initial concentration of 60 mg/L were ca. 16.42 and 7.30 mg/g, respectively. The BDO adsorption of treated CNTs was due to the physical adsorption. The experimental data fit Freundlich isotherm model better than Langmuir one. The loaded adsorbent could be efficiently desorbed and regenerated by SCW technique. Therefore, SCW is a promising and environmentally friendly technique for the improvement of adsorption and regeneration of CNTs.展开更多
Co(Ⅱ)and Ni(Ⅱ)are two common toxic heavy metals,and may simultaneously exist in contaminated water,soil,and sediment systems in Earth’s surface environment.Under this circumstance,competitive adsorption between the...Co(Ⅱ)and Ni(Ⅱ)are two common toxic heavy metals,and may simultaneously exist in contaminated water,soil,and sediment systems in Earth’s surface environment.Under this circumstance,competitive adsorption between the two metals may influence their migration,toxicity,and bioavailability.In this research,the competitive sorption of Co(Ⅱ)and Ni(Ⅱ)on γ-Al_2O_3was studied using both macroscopic sorption experiments and extended X-ray absorption fine structure(EXAFS)spectroscopy.Results suggest that Ni(Ⅱ)reduced the amount of Co(Ⅱ)sorption in a binary-solute system at pH 6.0.This is because both Co(Ⅱ)and Ni(Ⅱ)form inner-sphere surface complexes during sorption on γ-Al_2O_3and compete for the surface reactive sites.However,Co(Ⅱ)exhibited a negligible influence on sorption amount of Ni(Ⅱ)under the same conditions,which suggests Ni(Ⅱ)has a stronger affinity to alumina surface.At pH 7.5,Co(Ⅱ)and Ni(Ⅱ)sorption density were much higher than that at pH 6.0,but there no mutual competitive effect was observed.EXAFS analysis further revealed that formation of layered double-hydrated precipitates was the dominant sorption mechanism for both Co(Ⅱ)and Ni(Ⅱ)at pH 7.5.Because this type of sorption does not rely on surface reactive sites,there was no competition between Co(Ⅱ)and Ni(Ⅱ).This finding sheds light on risk assessment and remediation of Ni/Co pollution.展开更多
By numerically solving the Maxwell-Bloch equations using an iterative predictor-corrector finite-difference time-domain technique, we investigate propagating properties of a few-cycle laser pulse in a 4,4'-bis(di-n-...By numerically solving the Maxwell-Bloch equations using an iterative predictor-corrector finite-difference time-domain technique, we investigate propagating properties of a few-cycle laser pulse in a 4,4'-bis(di-n-butylamino) stilbene (BDBAS) molecular medium when a static electric field exists. Dynamical two-photon absorption (TPA) cross sections are obtained and optical limiting (OL) behavior is displayed. The results show that when the static electric field intensity increases, the dynamical TPA cross section is enhanced and the OL behavior is improved. Moreover, both even- and odd-order harmonic spectral components are generated with existence of the static electric field because it breaks the inversion symmetry of the BDBAS molecule. This work provides a method to modulate the nonlinear optical properties of the BDBAS compounds.展开更多
The surface properties of intrinsic and activated attapulgite were studied using potentiometric titration. The sorption mechanisms of Th(IV) on intrinsic and activated attapulgite were investigated by employing surf...The surface properties of intrinsic and activated attapulgite were studied using potentiometric titration. The sorption mechanisms of Th(IV) on intrinsic and activated attapulgite were investigated by employing surface complexation model and FITEQL 3.2 code. The results indicated that the sorption sites of intrinsic attapulgite involved in the sorption process were main ion exchange site ( ≡ XNa/K), strong site (≡ SsOH) and weak site ( ≡ SwOH), while only strong site ( ≡SSOH) and weak site (≡SwOH) were predominant for activated attapulgite. At pH 〈 2.5, the species of Th(IV) was main Th4+ in aqueous solution; then the hydrolysis species of Th(IV) (i.e., Th(OH)22+, Th(OH)3+ and Yh(OH)40) gradually formed as pH increasing. For the sorption of Th(IV) on intrinsic attapulgite, both ion exchange species ( ≡ X2Th) and inner-sphere surface complexes ( ≡ SsOTh) were dominant, while only inner-sphere surface complexes (i.e., ≡SSOThOH and ≡ SWOTh) were observed for Th(IV) sorption to activated attapulgite. In the presence of humic acid (HA), the sorption of Th(IV) on activated attapulgite was obviously enhanced; and both ≡ SsOH-HA-Th and≡ SSOTh were the predominant speciation. It was also interesting to find that the addition of HA obviously provoked the desorption behavior of Th(IV).展开更多
Humic substances (HS) substantially affect heavy metal (M) adsorption on mineral surfaces. However, quantitative descriptions of ternary systems involving M, HS and mineral surfaces remain unclear. This study exam...Humic substances (HS) substantially affect heavy metal (M) adsorption on mineral surfaces. However, quantitative descriptions of ternary systems involving M, HS and mineral surfaces remain unclear. This study examines adsorption in a model ternary system including Eu(III), fulvic acid (FA) and silica, and describes the adsorption of Eu(III) and FA by combining a double-layer model (DLM) and the Stockholm humic model (SHM). SHM explains the binding of H+ and Eu^3+ to EA and the DLM for FA and Eu(Ill) adsorption on silica. Experimental results showed that the presence of FA promotes Eu(III) adsorp- tion at acidic pH values, but decreases it at basic pH values, which indicates the formation of ternary surface complexes. Modeling calculations have shown that two ternary surface complexes are required to describe the experimental results in which Eu^3+ acts as a bridge between the surface site and FA. The present study suggests that the discrete-site approach to HS is a promising method for interpreting the adsorption data for M, HS and mineral ternary systems.展开更多
In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. Th...In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe_3O_4:S NPs exhibit a much better adsorption performance towards Pb(Ⅱ) than bare Fe_3O_4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(Ⅱ) by Fe_3O_4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis,and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(Ⅱ) adsorption. Thus, Fe_3O_4:S NPs are supposed to be a good adsorbents for Pb(Ⅱ) ions in environmental remediation.展开更多
Graphene oxides(GOs) were synthesized via modified Hummers method, and were applied as adsorbents to remove radionuclides from large volumes of aqueous solutions. The single and competitive sorption of four radionucli...Graphene oxides(GOs) were synthesized via modified Hummers method, and were applied as adsorbents to remove radionuclides from large volumes of aqueous solutions. The single and competitive sorption of four radionuclides(i.e., U(VI), 152+154Eu(III), 85+89Sr(II) and 134Cs(I)) on the GOs from aqueous solutions were investigated as a function of p H, ionic strength and radionuclide initial concentrations using batch technique. The results showed that the GOs had much higher sorption capacity than many other contemporary materials, for the preconcentration of radionuclides from large volumes of aqueous solutions. The sorption of radionuclides on GOs obeyed the Langmuir model, and was mainly attributed to surface complexation via the coordination of radionuclides with the oxygen-containing functional groups on GO surfaces. The competitive sorption results indicated that the selectivity sorption capacities were U(VI)>Eu(III)>Sr(II)>Cs(I). The GOs are suitable materials for the efficient removal and preconcentration of radionuclides from aqueous solutions in nuclear waste management and environmental pollution cleanup.展开更多
The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure...The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40 in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60 and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.展开更多
基金Project(CXZZ11-0812)supported by Graduate Students Innovative Projects of Jiangsu Province,ChinaProject(J20122288)supported by Guizhou Provincial Natural Science Foundation of China+1 种基金Project(Y4110235)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(JKY2011008)supported by Fundamental Research Funds for the Central Universities,China
文摘Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.
文摘In this work we investigated the effect of nitric acid concentration on the pore structure,surface chemistry and liquid phase adsorption of olive stone based activated carbon prepared by mixing process using phosphoric acid and steam as activating agents.Chemicals and textural characterization show that the increase of HNO3concentration increases considerably the total acidic groups but decreases specific surface area and pore volume.The study of adsorption in aqueous solutions of two organics,phenol and methylene blue,on raw and oxidized activated carbon indicates that the treatment of mixed activated carbon with different concentrations of nitric acid improves the adsorbent capacity for methylene blue at HNO3concentrations less or equal to 2 mol·L 1,while it has a negative effect on phenol adsorption.
基金supported by Malaysia's Ministry of Higher Education's Fundamental Research Grant Scheme(FRGS,grant number4F872)Research University grant(GUP,grant number17H65)support from Universiti Teknologi Malaysia in the form of Post-Doctoral Fellowship Scheme for the Project:“Catalytic Cracking of Low Density Polyethylene Waste to Liquid Fuels in Fixed Bed Reactor”
文摘Adsorption capacity of activated carbon prepared from spent tea leaves (STL-AC) for the removal of aspirin from aqueous solution was investigated in this study. Preliminary studies have shown that treatment with phosphoric acid (H3PO4) increased removal efficiency of STL-AC. Characterizations on STL-AC revealed excellent textural properties (1200 m2.g-1, 51% mesoporosity), as well as distinctive surface chemistry (1.08 mmol.g-1 and 0.54 mmol.g-1 for acidic and basic oxygenated groups, pHpzc = 2.02). Maximum removal efficiency of aspirin observed was 94.28% after 60 rain when the initial concentration was 100 mg.L-1, 0.5 g of adsorbent used, pH 3 and at a temperature of 30 ℃. The adsorption data were well fitted to the Freundlich isotherm model and obeyed the pseudo-second order kinetics model. The adsorption of aspirin onto STL-AC was exothermic in nature (△H = - 13.808 kJ.mol-1) and had a negative entropy change, △S (-41.444 J.mol-1). A negative Gibbs free energy, △G was obtained indicating feasibility and spontaneity of the adsorption process. The adsorp- tion capacity of △C-STL (178.57 mg.g-1) is considerably high compared to most adsorbents synthesized from various sources, due to the well-defined textural properties coupled with surface chemistry of STL-AC which fa- vors aspirin adsorption. The results demonstrate the potential of STL-AC as aspirin adsorbent.
文摘Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsorbent synthesized from natural condensed tannin. The novel adsorbent performs in aqueous solutions as a weak base with valid basic groups of 1.2mmol·g-1 tannin gel particles and therefore results in the elevation of pH value of aqueous solutions. Even when initial pH is 3.6, final pH at equilibrium can climb up to 6.5 that is above the pH value for Pb(OH)2 precipitation formation and then lead can be removed from wastewater by this so-called surface precipitation. The adsorption isotherm can be expressed by the Langmuir equation and the maximum capacity for adsorption of Pb is up to 92 mg·g-1 (based on dry adsorbent) when initial pH value is 3.6. Hence, the adsorbent does offer favorable properties in lead removal with respect to its high adsorption capacity at low initial pH value, which is advantageous to lead removal from acidic wastewater. A model is put forward to describe the individual adsorption phenomenon of the tannin gel adsorbent.
基金Project(51375110)supported by the National Natural Science Foundation of Chain
文摘The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting.
基金This work is supported by the National Key Basic Research Program (No.2014CB921101), the National Natural Science Foundation of China (No.21503149, No.21273208, and No.21473168), the PhD foundation of Tianjin Normal University (No.52XBI408), and the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology. Jing Huang thanks the Natural Science Foundation of the Anhui Higher Education Institutions (No.KJ2016A144) and the Natural Science Foundation of Anhui Province (No.1408085QB26). Computational resources have been provided by CAS, Shanghai and USTC Supercomputer Centers.
文摘Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-CaN4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-CaN4/SnS2 heterostructure is a promising g-CaN4 based water splitting photocatalyst with good performance.
文摘In the present work, the adsorption of sulfate and fluoride by two oxisols was studied, and during the adsorption OH- released from soils were measured and the change in surface charge carried by one of the soils after the adsorption of fluoride was examined. The results show that the adsorption of sulfate by oxisols and the release of OH- from oxisols both increased with the increase of sulfate added at a constant pH, but decreased when pH became higher gradually. The adsorption and release both decreased markedly after removal of iron oxide. The ratio of OH- to SO42- for Fe-removed soils decreased to 15-34% of the original soils. These results suggest that iron oxide was the chief carrier of hydroxyl groups capable of ligand exchange with sulfate in oxisols.Compared with sulfate, however, the amount of fluoride adsorbed, OH- released during the adsorption of fluoride and the ratio of OH- to F- were much larger. The effect of iron oxide on the adsorption of fluoride by oxisols was smaller than that on the adsorption of sulfate. The ratios of OH- to F- for an oxisol from Brazil were 0.62 and 0.48 respectively before and after removal of free iron oxides. This implied that iron oxide only provided a small amount of exchangeable hydroxyl groups capable of ligand exchange with fluoride in oxisol. The research results indicate that among the factors inducing the changes in some properties of oxisols after adsorption of fluoride, the role became less important in the sequence of the release of OH-> the increase of negative charge > the decrease of positive charge.
基金Sponsored by the Project from Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No. HIT.NSRIF.2008.05)
文摘In this paper, adsorption and regeneration characteristics of multi-walled carbon nanotubes (MWNTs) used as adsorbent were investigated for the removal of 1,3-beuzenediol (BDO) from water by the supercritieal water (SCW) technique. FFIR, XPS, SEM and dispersion stability tests were used to characterize the structure and surface morphology of CNTs. The results showed that CNTs surfaces were slightly activated and strongly etched in supercritieal water system. The adsorption capacity of SCW-treated CNTs was higher than that of raw CNTs. The adsorbed amounts for treated CNTs and raw CNTs samples at the same initial concentration of 60 mg/L were ca. 16.42 and 7.30 mg/g, respectively. The BDO adsorption of treated CNTs was due to the physical adsorption. The experimental data fit Freundlich isotherm model better than Langmuir one. The loaded adsorbent could be efficiently desorbed and regenerated by SCW technique. Therefore, SCW is a promising and environmentally friendly technique for the improvement of adsorption and regeneration of CNTs.
基金co-funded by the National Natural Science Foundation of China(No.41473084)the Project of China Geological Survey(No.12120114092001)the 1000 Youth Talent program
文摘Co(Ⅱ)and Ni(Ⅱ)are two common toxic heavy metals,and may simultaneously exist in contaminated water,soil,and sediment systems in Earth’s surface environment.Under this circumstance,competitive adsorption between the two metals may influence their migration,toxicity,and bioavailability.In this research,the competitive sorption of Co(Ⅱ)and Ni(Ⅱ)on γ-Al_2O_3was studied using both macroscopic sorption experiments and extended X-ray absorption fine structure(EXAFS)spectroscopy.Results suggest that Ni(Ⅱ)reduced the amount of Co(Ⅱ)sorption in a binary-solute system at pH 6.0.This is because both Co(Ⅱ)and Ni(Ⅱ)form inner-sphere surface complexes during sorption on γ-Al_2O_3and compete for the surface reactive sites.However,Co(Ⅱ)exhibited a negligible influence on sorption amount of Ni(Ⅱ)under the same conditions,which suggests Ni(Ⅱ)has a stronger affinity to alumina surface.At pH 7.5,Co(Ⅱ)and Ni(Ⅱ)sorption density were much higher than that at pH 6.0,but there no mutual competitive effect was observed.EXAFS analysis further revealed that formation of layered double-hydrated precipitates was the dominant sorption mechanism for both Co(Ⅱ)and Ni(Ⅱ)at pH 7.5.Because this type of sorption does not rely on surface reactive sites,there was no competition between Co(Ⅱ)and Ni(Ⅱ).This finding sheds light on risk assessment and remediation of Ni/Co pollution.
文摘By numerically solving the Maxwell-Bloch equations using an iterative predictor-corrector finite-difference time-domain technique, we investigate propagating properties of a few-cycle laser pulse in a 4,4'-bis(di-n-butylamino) stilbene (BDBAS) molecular medium when a static electric field exists. Dynamical two-photon absorption (TPA) cross sections are obtained and optical limiting (OL) behavior is displayed. The results show that when the static electric field intensity increases, the dynamical TPA cross section is enhanced and the OL behavior is improved. Moreover, both even- and odd-order harmonic spectral components are generated with existence of the static electric field because it breaks the inversion symmetry of the BDBAS molecule. This work provides a method to modulate the nonlinear optical properties of the BDBAS compounds.
基金supported by the National Natural Science Foundation of China (20871062, J1030932)the Fundamental Research Funds for the Central Universities (lzujbky-2010-215)the National Synchrotron Radiation Innovation Foundation of Ministry of Education (20090137S)
文摘The surface properties of intrinsic and activated attapulgite were studied using potentiometric titration. The sorption mechanisms of Th(IV) on intrinsic and activated attapulgite were investigated by employing surface complexation model and FITEQL 3.2 code. The results indicated that the sorption sites of intrinsic attapulgite involved in the sorption process were main ion exchange site ( ≡ XNa/K), strong site (≡ SsOH) and weak site ( ≡ SwOH), while only strong site ( ≡SSOH) and weak site (≡SwOH) were predominant for activated attapulgite. At pH 〈 2.5, the species of Th(IV) was main Th4+ in aqueous solution; then the hydrolysis species of Th(IV) (i.e., Th(OH)22+, Th(OH)3+ and Yh(OH)40) gradually formed as pH increasing. For the sorption of Th(IV) on intrinsic attapulgite, both ion exchange species ( ≡ X2Th) and inner-sphere surface complexes ( ≡ SsOTh) were dominant, while only inner-sphere surface complexes (i.e., ≡SSOThOH and ≡ SWOTh) were observed for Th(IV) sorption to activated attapulgite. In the presence of humic acid (HA), the sorption of Th(IV) on activated attapulgite was obviously enhanced; and both ≡ SsOH-HA-Th and≡ SSOTh were the predominant speciation. It was also interesting to find that the addition of HA obviously provoked the desorption behavior of Th(IV).
基金supported by the National Natural Science Foundation of China(91226113,J1210001)
文摘Humic substances (HS) substantially affect heavy metal (M) adsorption on mineral surfaces. However, quantitative descriptions of ternary systems involving M, HS and mineral surfaces remain unclear. This study examines adsorption in a model ternary system including Eu(III), fulvic acid (FA) and silica, and describes the adsorption of Eu(III) and FA by combining a double-layer model (DLM) and the Stockholm humic model (SHM). SHM explains the binding of H+ and Eu^3+ to EA and the DLM for FA and Eu(Ill) adsorption on silica. Experimental results showed that the presence of FA promotes Eu(III) adsorp- tion at acidic pH values, but decreases it at basic pH values, which indicates the formation of ternary surface complexes. Modeling calculations have shown that two ternary surface complexes are required to describe the experimental results in which Eu^3+ acts as a bridge between the surface site and FA. The present study suggests that the discrete-site approach to HS is a promising method for interpreting the adsorption data for M, HS and mineral ternary systems.
基金supported by the National Natural Science Foundation of China (B21271179, 21607101)Program for New Century Excellent Talents in University (NCET-13-0364)+1 种基金China Postdoctoral Science Foundation Funded Project (2016M590363)State Key Program of National Natural Science Foundation of China (21436007)
文摘In this work, we report the synthesis of magnetic sulfur-doped Fe_3O_4 nanoparticles (Fe_3O_4:S NPs) with a novel simple strategy,which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe_3O_4:S NPs exhibit a much better adsorption performance towards Pb(Ⅱ) than bare Fe_3O_4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(Ⅱ) by Fe_3O_4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis,and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(Ⅱ) adsorption. Thus, Fe_3O_4:S NPs are supposed to be a good adsorbents for Pb(Ⅱ) ions in environmental remediation.
基金supported by the National Natural Science Foundation of China(21225730,91326202)the Fundamental Research Funds for the Central Universities+2 种基金the Jiangsu Provincial Key Laboratory of Radiation Medicine,Protectionthe Priority Academic Program Development of Jiangsu Higher Education InstitutionsMCTL Visiting Fellowship Program from Key Laboratory of Marine Chemistry Theory and Technology(Ocean University of China),Ministry of Education
文摘Graphene oxides(GOs) were synthesized via modified Hummers method, and were applied as adsorbents to remove radionuclides from large volumes of aqueous solutions. The single and competitive sorption of four radionuclides(i.e., U(VI), 152+154Eu(III), 85+89Sr(II) and 134Cs(I)) on the GOs from aqueous solutions were investigated as a function of p H, ionic strength and radionuclide initial concentrations using batch technique. The results showed that the GOs had much higher sorption capacity than many other contemporary materials, for the preconcentration of radionuclides from large volumes of aqueous solutions. The sorption of radionuclides on GOs obeyed the Langmuir model, and was mainly attributed to surface complexation via the coordination of radionuclides with the oxygen-containing functional groups on GO surfaces. The competitive sorption results indicated that the selectivity sorption capacities were U(VI)>Eu(III)>Sr(II)>Cs(I). The GOs are suitable materials for the efficient removal and preconcentration of radionuclides from aqueous solutions in nuclear waste management and environmental pollution cleanup.
基金supported by the National Natural Science Foundation of China(20907055,20971126 & 21077107)the National Basic Research Program of China(2007CB936602 & 2011CB933700)
文摘The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40 in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60 and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.