The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the ...The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.展开更多
Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand...Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.展开更多
Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in applica...Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.展开更多
基金Financial supports for this work provided by the National High Technology Research and Development Program of China (No.2008BAB31B02) is gratefully acknowledged
文摘The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.
文摘Reducing CO2 emissions and restraining dependence on nuclear power generation are serious concerns in the prevention of global warming since the Great East Japan Earthquake. To do so, it is necessary to use and expand natural renewable energy source such as solar energy and to promote energy conservation. However, in high-latitude regions, it is difficult to directly and effectively use solar power due to on insufficient amount of solar radiation. If steam can be generated from warm water at less than 373 K, it is possible to obtain steam by solar water heaters from weak solar radiation and industrial waste warm water without the consumption of any fossil fuels. In this study, the authors have been developing a system which generates steam over 423 K from warm water at less than 373 K using an adsorption heat pump with zeolite. Therefore, bench-scale equipment which generates steam continuously and the experimental results are mentioned.
基金supported by the National Natural Science Foundation of China(Grant No.51336003)the 333 Scientific Research Project of Jiangsu Province(Grant No.BRA2011134)
文摘Nanostructured surface is a promising photon management strategy to tune spectrum in design of the selective solar absorber.In this paper,we propose a nanocone structured surface as a perfect solar absorber in application of the solar thermoelectric generators(STEGs).The trade-off between the solar absorption and the mid-infrared emission is obtained to maximize the STEG efficiency.The effects of the geometric parameters,thermal concentration,incident angle and polarized state as well as the lattice arrangement are systematically investigated.The results show that the STEGs equipped with our proposed selective solar absorber can achieve a peak efficiency of 6.53%under AM1.5G condition(no optical concentration).Furthermore,the selective solar absorber exhibits insensitive behavior to the incident angle and polarization angle as well.This means that the proposed selective solar absorber can utilize solar energy as much as possible and be generally suitable in equipping the STEGs without optical concentration.