The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capabilit...The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capability for UO22+ were synthesized by in situ polymerization of acrylonitrile monomers on GO surfaces, followed by amidoximation treatment with hydroxylamine. The adsorption capacities of PAO/rGO composites for UO22+ reached as high as 872 mg/g at pH 4.0. The excellent tolerance of these composites for high salinity and their regeneration-reuse properties can be applied in the nuclear-fuel industry by high extraction of trace UO22+ ions from seawater.展开更多
Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spec...Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Based on the results of potentiometric acid-base ti- trations, the total carboxylic acid concentration on OGO surface was calculated to be 3.92 retool/g, which was much higher than that on GO surface. The results of adsorption experiments indicated that the adsorption capacities of OGO for Sr(II) and U(VI) removal were improved significantly after ozonization.展开更多
基金supported by the Chinese National Fusion Project for ITER(2013GB110005)the National Natural Science Foundation of China(91326202,21207136,21272236,21225730)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions,Hefei Center for Physical Science and Technology(2012FXZY005)the Science Foundation of Institute of Plasma Physics(DSJJ-13-YY01)
文摘The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capability for UO22+ were synthesized by in situ polymerization of acrylonitrile monomers on GO surfaces, followed by amidoximation treatment with hydroxylamine. The adsorption capacities of PAO/rGO composites for UO22+ reached as high as 872 mg/g at pH 4.0. The excellent tolerance of these composites for high salinity and their regeneration-reuse properties can be applied in the nuclear-fuel industry by high extraction of trace UO22+ ions from seawater.
基金supported by the National Natural Science Foundation of China (21207136, 21272236, 21225730, 21577032, 91326202)the Chinese National Fusion Project for ITER (2013GB110005)+1 种基金the Fundamental Research Funds for the Central Universities (JB2015001)the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions are acknowledged
文摘Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Based on the results of potentiometric acid-base ti- trations, the total carboxylic acid concentration on OGO surface was calculated to be 3.92 retool/g, which was much higher than that on GO surface. The results of adsorption experiments indicated that the adsorption capacities of OGO for Sr(II) and U(VI) removal were improved significantly after ozonization.