In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamic...Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.展开更多
With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are ...With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.展开更多
Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial...Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.展开更多
The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculatio...The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.展开更多
[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environm...[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environment by using NaCl solutions at different concentrations,the dry weight,fresh weight and ion content of oil sunflower seedlings were determined. [Result] With the increase of NaCl concentration,the growth rate of oil sunflower seedling was inhibited. In addition,its fresh weight and dry weight also decreased; the fresh weight of leaf decreased most significantly by 60%,and that of cotyledon decreased most slightly by 13% at 200 mmol/L NaCl concentration. The dry weight of root,stem,leaf and cotyledon decreased by 35%,39%,55% and 8% respectively,showing a similar decreasing trend with fresh weight. Under NaCl stress,Na+ content in root and stem of oil sunflower seedling increased while K+ decreased. Na+ content was mainly concentrated in roots and stems much more than in leaves; K+ content in roots decreased most significantly by 21% compared with control,and it was relatively high in leaf. Ca2+ and Mg2+ content was decreased slightly in roots and stems; Ca2+ content in leaves and cotyledons was stable; Mg2+ content was slightly increased. [Conclusion] Oil sunflower maintained high mineral ion absorptionunder salt stress,that maybe the part reason for high salt tolerance of oil sunflower seedlings.展开更多
Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring s...Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring speed on rare earth leaching process and the leaching behaviors of the single rare earth element were investigated in order to reveal the rare earth leaching characteristics. Besides, the comparison of leaching effects between magnesium sulfate and ammonium sulfate was also studied. The results showed that the rare earth leaching process could be well described with inner diffusion control model and the apparent activation energy was 9.48 kJ/mol. The leaching behaviors of the single rare earth element were brought into correspondence with rare earths. Moreover, when the concentration of leaching agent was 0.20 mol/L, the rare earth leaching efficiency could all reach above 95% and the leaching efficiency of aluminum impurities could be restrained by 10% using magnesium sulfate compared with ammonium sulfate.展开更多
Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific c...Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.展开更多
Aim To purify and characterize flammulin, a basic protein with anti-tumoractivities. Methods Ammonium sulfate, ethanol fractionation and column chromatography were used forseparation and purification. Electrophoretic ...Aim To purify and characterize flammulin, a basic protein with anti-tumoractivities. Methods Ammonium sulfate, ethanol fractionation and column chromatography were used forseparation and purification. Electrophoretic analysis, amino acid analysis, and MS of flammulin werecarried out. Results Flammulin was purified to electrophoretic homogeneity and crystallized. With amolecular mass of 19891.13 Da, pI 8.9, λ_(max) = 276 - 278 nm, λ_(min) = 250 nm, flammulin wascharacterized by its lack of methionine. Fingerprint mapping of flammulin was determined by MALDI-MSfollowing in-gel protease digestion; no close matches were identified. Conclusion Flammulin waspurified to electrophoretic homogeneity, and its characteristics are discussed for the first time.展开更多
H2TiO3 was obtained from the acid-modified adsorbent precursor Li2TiO3,which was synthesized by a solid-phase reaction between TiO2 and Li2CO3.The extraction ratio of Li+ from Li2TiO3 was 98.86%,almost with no Ti4+ ...H2TiO3 was obtained from the acid-modified adsorbent precursor Li2TiO3,which was synthesized by a solid-phase reaction between TiO2 and Li2CO3.The extraction ratio of Li+ from Li2TiO3 was 98.86%,almost with no Ti4+ extracted.The effects of lithium titanium ratio,calcining temperature and time were investigated on the synthesis of Li2TiO3.Li2TiO3,H2TiO3 and the adsorbed Li+ adsorbent were characterized by XRD and SEM.The lithium adsorption properties were investigated by the adsorption kinetics and adsorption isotherm.The results indicate that H2TiO3 has an excellent adsorptive capacity for Li+.Two simplified kinetic models including the pseudo-first-order and pseudo-second-order equations were selected to follow the adsorption processes.The rate constants of adsorption for these kinetic models were calculated.The results show that the adsorption process can be described by the pseudo-second-order equation,and the process is proved to be a chemical adsorption.The adsorption process that H2TiO3 adsorbs Li+ in LiCl solution well fits the Langmuir equation with monolayer adsorption.展开更多
The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-pre...The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.展开更多
[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by co...[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.展开更多
Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl...Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.展开更多
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
基金Supported by the National Natural Science Foundation of China(12275172)。
文摘Based on the Hirota bilinear method,this study derived N-soliton solutions,breather solutions,lump solutions and interaction solutions for the(2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation.The dynamical characteristics of these solutions were displayed through graphical,particularly revealing fusion and ssion phenomena in the interaction of lump and the one-stripe soliton.
基金This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05016 and No.2016ZX05046).
文摘With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.
基金Project(CXZZ11-0812)supported by Graduate Students Innovative Projects of Jiangsu Province,ChinaProject(J20122288)supported by Guizhou Provincial Natural Science Foundation of China+1 种基金Project(Y4110235)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(JKY2011008)supported by Fundamental Research Funds for the Central Universities,China
文摘Amino-functionalized magnetic nanoparticle (NH2-MNP) were prepared by a sol-gel approach. The adsorption behavior of Cu(II) ions on NH2-MNP was discussed systematically by batch experiments. The effects of initial Cu(II) ions concentration, time, pH and temperature were investigated. In kinetic studies, the pseudo-second-order model was successfully employed, and the pseudo-first-order model substantiated that Cu(II) adsorption on NH2-MNP was a diffusion-based process. Langmuir model and Dubinin-Radushkevich model (R2〉0.99) were more corresponded with the adsorption isotherm data of Cu(II) ions than Freundlich model. The adsorption capacity was increased with the increment of temperature and pH. NH2-MNP remains excellent Cu(II) recoveries after reusing five adsorption and desorption cycles, making NH2-MNP a promising candidate for repetitively removing heavy metal ions from environmental water samples. According to the results obtained from adsorption activation energy and thermodynamic studies, it can be inferred that the main adsorption mechanism between absorbent and Cu(II) ions is ion exchange-surface complexation.
基金Projects(51464029,51168020,51404119,)supported by the National Natural Science Foundation of ChinaProject(2014Y084)supported by the Natural Science Foundation of Yunnan Province Education Department,ChinaProjects(41118011,201421066)supported by the Cultivation Program of Kunming University of Science and Technology,China
文摘The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.
基金Supported by CAS Western Light, " Dr. West funded " Project(0806270XBB)~~
文摘[Objective] The purpose was to discuss the effects of different NaCl concentrations on fresh weight and dry weight,ion absorption and distribution in oil sunflower seedlings. [Method] Under the simulated salt environment by using NaCl solutions at different concentrations,the dry weight,fresh weight and ion content of oil sunflower seedlings were determined. [Result] With the increase of NaCl concentration,the growth rate of oil sunflower seedling was inhibited. In addition,its fresh weight and dry weight also decreased; the fresh weight of leaf decreased most significantly by 60%,and that of cotyledon decreased most slightly by 13% at 200 mmol/L NaCl concentration. The dry weight of root,stem,leaf and cotyledon decreased by 35%,39%,55% and 8% respectively,showing a similar decreasing trend with fresh weight. Under NaCl stress,Na+ content in root and stem of oil sunflower seedling increased while K+ decreased. Na+ content was mainly concentrated in roots and stems much more than in leaves; K+ content in roots decreased most significantly by 21% compared with control,and it was relatively high in leaf. Ca2+ and Mg2+ content was decreased slightly in roots and stems; Ca2+ content in leaves and cotyledons was stable; Mg2+ content was slightly increased. [Conclusion] Oil sunflower maintained high mineral ion absorptionunder salt stress,that maybe the part reason for high salt tolerance of oil sunflower seedlings.
基金Project(2015BAB16B01)supported by the National Science and Technology Support Program of China
文摘Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring speed on rare earth leaching process and the leaching behaviors of the single rare earth element were investigated in order to reveal the rare earth leaching characteristics. Besides, the comparison of leaching effects between magnesium sulfate and ammonium sulfate was also studied. The results showed that the rare earth leaching process could be well described with inner diffusion control model and the apparent activation energy was 9.48 kJ/mol. The leaching behaviors of the single rare earth element were brought into correspondence with rare earths. Moreover, when the concentration of leaching agent was 0.20 mol/L, the rare earth leaching efficiency could all reach above 95% and the leaching efficiency of aluminum impurities could be restrained by 10% using magnesium sulfate compared with ammonium sulfate.
基金National Key Research and Development Program of China(2020YFA0405800)National Natural Science Foundation of China(12322515,U23A20121,12225508)+2 种基金Youth Innovation Promotion Association of CAS(2022457)National Postdoctoral Program for Innovative Talents(BX20230346)China Postdoctoral Science Foundation(2023M743365)。
文摘Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.
文摘Aim To purify and characterize flammulin, a basic protein with anti-tumoractivities. Methods Ammonium sulfate, ethanol fractionation and column chromatography were used forseparation and purification. Electrophoretic analysis, amino acid analysis, and MS of flammulin werecarried out. Results Flammulin was purified to electrophoretic homogeneity and crystallized. With amolecular mass of 19891.13 Da, pI 8.9, λ_(max) = 276 - 278 nm, λ_(min) = 250 nm, flammulin wascharacterized by its lack of methionine. Fingerprint mapping of flammulin was determined by MALDI-MSfollowing in-gel protease digestion; no close matches were identified. Conclusion Flammulin waspurified to electrophoretic homogeneity, and its characteristics are discussed for the first time.
基金Project(2008BAB35B04) supported by the National Key Technologies R&D Program of ChinaProject(2010QZZD003) supported by Central South University Advanced Research Program,China
文摘H2TiO3 was obtained from the acid-modified adsorbent precursor Li2TiO3,which was synthesized by a solid-phase reaction between TiO2 and Li2CO3.The extraction ratio of Li+ from Li2TiO3 was 98.86%,almost with no Ti4+ extracted.The effects of lithium titanium ratio,calcining temperature and time were investigated on the synthesis of Li2TiO3.Li2TiO3,H2TiO3 and the adsorbed Li+ adsorbent were characterized by XRD and SEM.The lithium adsorption properties were investigated by the adsorption kinetics and adsorption isotherm.The results indicate that H2TiO3 has an excellent adsorptive capacity for Li+.Two simplified kinetic models including the pseudo-first-order and pseudo-second-order equations were selected to follow the adsorption processes.The rate constants of adsorption for these kinetic models were calculated.The results show that the adsorption process can be described by the pseudo-second-order equation,and the process is proved to be a chemical adsorption.The adsorption process that H2TiO3 adsorbs Li+ in LiCl solution well fits the Langmuir equation with monolayer adsorption.
基金Project(51174229) supported by the National Natural Science Foundation of China
文摘The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2014JZ01 and2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.
基金The National Natural Science Foundation of China(No.60678042)the Natural Science Foundation of Jiangsu Province(No.BK2006553)the Pre-Research Project of the National Natural Science Foundation supported by Southeast University(No.9207041399)
文摘Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.